Sub-lingual Immunotherapy: World Allergy Organization Position Paper 2009

Chair: G Walter Canonica

CoChairs:
Jean Bousquet, Thomas Casale, Richard F Lockey, Carlos E Baena-Cagnani, Ruby Pawankar, Paul C Potter

Authors:

Co-Authors:

Acknowledgement

World Allergy Organization acknowledges Ronald L Rabin for reviewing this Position Paper. Ken Rainey, Medical Writer, and Karen Henley, WAO Global Project Director, are acknowledged for their assistance in editing and co-ordinating the manuscript.


Societies/Organisations Attending the Paris Meeting

Regional Member Societies
Asia Pacific Association of Allergology and Clinical Immunology.

Affiliate Member Societies
Interasma (International Association of Asthmology).

National Member Societies
Albanian Society of Allergology and Clinical Immunology.
Allergy Society of South Africa.
American Academy of Allergy, Asthma and Immunology.
American College of Allergy, Asthma and Immunology.
Argentine Association of Allergy and Immunology.
Australasian Society of Clinical Immunology and Allergy.
Bangladesh Society of Allergy and Immunology.
Belgian Society of Allergology and Immunology.
Brazilian Society of Allergy and Immunopathology.
British Society for Allergy and Clinical Immunology.

Correspondence: G. Walter Canonica, MD, Allergy and Respiratory Diseases, DIMI, Department of Internal Medicine, University of Genoa, Largo Rosanna Benzilo, Genoa 1-16132, Italy
Email: canonica@unige.it

Commonwealth of Independent States (CIS).
European Academy of Allergy and Clinical Immunology (EAACI).
Latin American Society of Allergy and Immunology.
Bulgarian National Society of Allergology.
China Allergology Society and Chinese Allergists.
Cuban Society of Allergology.
Czech Society of Allergology and Clinical Immunology.
Finnish Society of Allergology and Clinical Immunology.
French Society of Allergology and Clinical Immunology.
German Society for Allergology and Clinical Immunology.
Hellenic Society of Allergology and Clinical Immunology.
Hungarian Society of Allergology and Clinical Immunology.
Italian Association of Territorial and Hospital Allergists.
Italian Society for Allergology and Clinical Immunology.
Japanese Society of Allergology.
Korean Academy of Allergy, Asthma and Clinical Immunology.
Malaysian Society of Allergy and Immunology.
Mexican College of Clinical Immunology and Allergy (CMICA).
Mexican College of Clinical Immunology and Allergy (CMICA).
Mexican College of Pediatricians Specialized in Allergy and Clinical Immunology.
Portuguese Society of Allergology and Clinical Immunology.
Romanian Society of Allergology and Clinical Immunology.
Singapore Society of Immunology, Allergy and Rheumatology.
Spanish Society of Allergology and Clinical Immunology.
Swiss Society of Allergology and Immunology.
Swedish Society of Allergology and Immunology.
Turkish National Society of Allergy and Clinical Immunology.
Venezuelan Society of Allergy and Immunology.

Contributing Non-Member Society
Southern European Allergy Society.

Non-Governmental Organizations
Allergic Rhinitis and Its Impact on Asthma (ARIA).
European Federation of Allergy and Airway Diseases Patients Association (EFA).
International Primary Care Respiratory Group (IPCRG).
Global Allergy and Asthma European Network (GA2LEN).
National Institutes of Health (NIH).

Ratification by WAO Member Societies not attending the Paris meeting

Approved by:

Colombian Allergy, Asthma, and Immunology Association.

Egyptian Society of Allergy and Clinical Immunology.
Egyptian Society of Pediatric Allergy and Immunology.
Icelandic Society of Allergy and Immunology.”
Indian College of Allergy, Asthma and Applied Immunology.
Mexican College of Allergy, Asthma and Clinical Immunology.
Mongolian Society of Allergology.
Norwegian Society of Allergology and Immunopathology.
Peruvian Society of Allergy and Immunology.
Russian Association of Allergology and Clinical Immunology.
Allergy and Immunology Society of Thailand.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAAI</td>
<td>American Academy of Allergy and Clinical Immunology</td>
</tr>
<tr>
<td>ACAAI</td>
<td>American College of Allergy and Clinical Immunology</td>
</tr>
<tr>
<td>ADR</td>
<td>Adverse Drug Reaction</td>
</tr>
<tr>
<td>AE</td>
<td>Adverse Event</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine Monophosphate</td>
</tr>
<tr>
<td>ARIA</td>
<td>Allergic Rhinitis and its Impact on Asthma</td>
</tr>
<tr>
<td>AUC</td>
<td>Area Under Curve</td>
</tr>
<tr>
<td>BHR</td>
<td>Bronchial Hyperresponsiveness</td>
</tr>
<tr>
<td>CHMP</td>
<td>Committee for Human Medicinal Products</td>
</tr>
<tr>
<td>CIS</td>
<td>Commonwealth of Independent States</td>
</tr>
<tr>
<td>CMD</td>
<td>Cumulative Monthly Dose</td>
</tr>
<tr>
<td>CONSORT</td>
<td>Consolidated Standards of Reporting Trials</td>
</tr>
<tr>
<td>DBPCFC</td>
<td>Double-blind placebo-controlled food challenge</td>
</tr>
<tr>
<td>DBPC-RCT</td>
<td>Double-blind, placebo-controlled – randomized clinical trial</td>
</tr>
<tr>
<td>EAACI</td>
<td>European Academy of Allergy and Clinical Immunology</td>
</tr>
<tr>
<td>EBM</td>
<td>Evidence-Based Medicine</td>
</tr>
<tr>
<td>ECP</td>
<td>Eosinophil Cationic Protein</td>
</tr>
<tr>
<td>EFA</td>
<td>European Federation of Allergy and Airway Diseases Patients Association</td>
</tr>
<tr>
<td>EMEA</td>
<td>European Medicines Agency</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FDA</td>
<td>(US) Food and Drug Administration</td>
</tr>
<tr>
<td>FeNO</td>
<td>Fraction of exhaled Nitric Oxide</td>
</tr>
<tr>
<td>FEV1</td>
<td>Forced Expiratory Volume in One Second</td>
</tr>
<tr>
<td>FVC</td>
<td>Forced Vital Capacity</td>
</tr>
<tr>
<td>GA2LEN</td>
<td>Global Allergy and Asthma European Network</td>
</tr>
<tr>
<td>GP</td>
<td>General Practitioner</td>
</tr>
<tr>
<td>GRADE</td>
<td>Grading Recommendations, Assessment, Development and Evidence</td>
</tr>
<tr>
<td>HCP</td>
<td>Health Care Professional</td>
</tr>
<tr>
<td>HDM</td>
<td>House Dust Mite</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Intercellular Adhesion Molecule-1</td>
</tr>
<tr>
<td>ICER</td>
<td>Incremental Cost-Effectiveness Ratio</td>
</tr>
<tr>
<td>IDO</td>
<td>Indoleamine 2,3-dioxygenase</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>Interasma</td>
<td>International Association of Asthmaology</td>
</tr>
<tr>
<td>IPCRG</td>
<td>International Primary Care Respiratory Group</td>
</tr>
<tr>
<td>IT</td>
<td>Immunotherapy</td>
</tr>
<tr>
<td>LLR</td>
<td>Large Local Reactions</td>
</tr>
<tr>
<td>MedDRA</td>
<td>Medical Dictionary for Regulatory Activities</td>
</tr>
<tr>
<td>MHC</td>
<td>Major Histocompatibility Complex</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger Ribonucleic Acid</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>PAT</td>
<td>Preventive Allergy Treatment (study)</td>
</tr>
<tr>
<td>PEF</td>
<td>Peak Expiratory Flow</td>
</tr>
</tbody>
</table>
Preface

Sublingual immunotherapy (SLIT) has gained wide acceptance in many European countries and has raised the level of interest in immunotherapy among practicing allergists and primary care physicians. Large pivotal double-blind, placebo-controlled, randomized clinical trials have confirmed the efficacy and safety of SLIT, although some negative trials have also been published. In 2008, the World Allergy Organization (WAO) Board of Directors decided that it was important and timely to advise our global constituents on the current State of the Art on SLIT, to offer consensus on its use based on currently available evidence and expert opinion, and to develop practice parameters. Unmet needs would be identified by analysis of recent and ongoing SLIT clinical trials, then recommendations for further studies needed, and suggestions for the appropriate methodology to conduct them, would be offered.

To ensure a truly global consensus on SLIT, a meeting was held on 22 - 23 January 2009 in Paris, France. WAO invited its Regional, National and Affiliate Member Societies to participate actively by sending representatives to the meeting. Non-Governmental Organizations working in the field of allergy were also invited to attend, and ARIA, EFA, IPCRG, Interasma, GA²LEN et al. were represented.

The meeting and its outcomes remain totally independent from the interest/influence/funding of the pharmaceutical or the allergen extract/vaccine industry.

Regulatory Perspective

Historical perspective:

Before the 1980s there was no allergen standardization; this resulted in marked variations in allergenic strength among allergen vaccine batches produced in different phases.

Until 1991 allergen vaccines were considered “Galenic” drugs, because they were prepared upon request of the physician for a specific patient. Specific immunotherapy was administered through the injective route only, and the available allergen preparations were used both in diagnosis and therapy. Most firms produced batches of ready-to-prepare extracts and the final phase of production consisted of matching the name of a patient with a specific pre-prepared vaccine. Leading up to 1991, the companies active in the allergen manufacturing sector noticed that physicians had changed their prescribing patterns, and were now requesting single specific allergens for immunotherapy, rather than the allergen mixtures that had previously been supplied.

In the 1990s, when sub-lingual immunotherapy first appeared on the market, the available vaccines for SLIT were only single allergen preparations, as required by the first guideline in this field. It immediately became evident to the regulatory authorities that documents pertaining to the production of allergens and their standardization method were needed; it is important not only to prepare extracts that are always equivalent between different batches, but also to prepare an initial reference extract (the standard extract) which is allergenically/biologically active, to provide a comparison with subsequent production batches.

Current situation

According to Guideline 2001/83/EC, allergens are immunological medicinal products and therefore, in general, require a marketing authorization. However, in several countries national regulations are implemented that still allow marketing of allergen products as “named patient preparations” (NPPs) without a marketing authorization. For example, in Germany it has been estimated that approximately 50% of the market for allergen products are NPPs. This market segment includes the majority of allergen products for SLIT.

From the regulatory point of view, there is no difference between allergen products for SLIT and SCIT. By contrast a clear difference exists between the requirements on natural allergen extracts versus recombinant allergens, in particular regarding acceptance criteria for product quality (1–3). In Germany, four products for SLIT were authorized up to mid-2009, while more than 200 allergen products for SCIT had a marketing authorization. Of the SLIT products, one grass pollen allergen tablet successfully passed a mutual recognition procedure and is available in the majority of EU countries.

Recent Phase III clinical trials performed with two grass pollen tablets involved hundreds of patients in each trial and were performed according to an adequate DBPC-RCT design. These studies and others showed that...
particularly for SLIT, parameters such as determination of an adequate pre-treatment period in seasonal rhinoconjunctivitis trials, and exploratory studies for determination of the dose resulting in the most favorable risk:benefit ratio, are of major importance. A recent WAO statement (4) and the EMEA Guideline (5) define for the first time the regulatory requirements for clinical trials in SIT, and will lead to improved harmonization of assessments by regulatory agencies of data obtained from clinical trials.

Increased availability of authorized allergen products with proven quality, safety and efficacy will lead to an improved benefit for allergic patients and may also improve the general acceptance of SIT as an established treatment by regulatory agencies.

Sub-lingual vaccines appear to have heralded a new era in specific allergen desensitization; because of their efficacy and safety, they have been considered eligible for submission for registration by many regulatory authorities. New products registered for respiratory allergopathologies approach this pathology in an etiologic way; they may act as real biological modifiers, and have long-lasting effects. This benefit is interesting not only clinically, but also in terms of their pharmacoeconomic profile.

For the industry

- A non-regulated sector makes possible the use of “low quality” products, and fails to give adequate recognition to the ethical manufacturers who conduct scientific research and employ good manufacturing practices. A more regulated sector attracts the increasing interest of ethical and qualified investors.

For the regulatory agencies

- Marketing of non-regulated products precludes correct pharmacovigilance and, in consequence, precludes all the activities connected with an open and transparent dialogue among the stakeholders, eg, pre- and post-registration clinical trials, professional training, and congress activities.

References, Preface


Chapter 1: Introduction and historical background to sublingual immunotherapy

- Subcutaneous immunotherapy (SCIT) currently represents the standard immunotherapy modality, with well ascertained clinical efficacy.
- The first SLIT randomized double-blind, placebo-controlled trial (DBPC-RCT) was published in 1986. The rationale proposed for SLIT was to improve the safety and to make the treatment more convenient.
- The first DBPC-RCT trial with tablets was published in 1986.
- SLIT was firstly accepted as a viable alternative to SCIT in the WHO position paper, published in 1998, and then included in the ARIA guidelines.
Allergen-specific immunotherapy (SIT), or allergen vaccination is the practice of administering to allergic subjects increasing amounts of allergen(s) (the allergenic extract or vaccine) to achieve hyposensitization, that is to reduce the symptoms occurring during the natural exposure to the allergen(s) itself. The history of SIT began in first years of the twentieth century, based on the idea of the vaccination against infectious agents. In fact, Leonard Noon (1) aimed at achieving a vaccination against ‘airborne toxins’, and for this reason he chose the subcutaneous route of administration. Although the theoretical background was incorrect, SIT was immediately found to be effective in reducing symptoms of hay-fever, its use spread rapidly, and the subcutaneous route (SCIT) remained therefore the standard practice.

Indeed, the idea of administering the allergenic extracts via non injection routes is not as recent as commonly believed. The first descriptions of the ‘oral’ route of administration also appeared in the early 1900s (2) and the first clinical attempts with this administration were carried out only few years later (3, 4). Subsequently, other routes of administration were proposed, that is, local bronchial during the 1950s (5, 6) and local nasal (7, 8) during the 1970s. The overall rationale of these attempts was of course that of finding a safer and more convenient route of administration for SIT. Those routes have been variously named, that is, alternative, non-parenteral, non-injection or local routes. Presently, it is agreed that the most proper terms are local and non-injection, which are equivalent; whereas the word alternative has been abandoned since it might generate confusion with other unconventional medicines. The oral route was investigated in several clinical trials performed during the 1980s (9–12), but the clinical results were controversial and, in some cases, important gastrointestinal adverse events were reported. For these reasons, oral administration was gradually abandoned. In 1986, the British Committee for the Safety of Medicines (13) reported several deaths caused by SCIT, and raised serious concerns about the safety and the risk/benefit ratio of SIT, also because cheaper and effective drugs (e.g. oral H1-antihistamines and topical corticosteroids) had become available for the treatment of respiratory allergy. In this scenario, the interest in non-injection routes of IT increased again (14), and in 1986 the first randomized controlled trial with the sublingual route (SLIT) was published (15). This study was conducted with very low doses of a mite extract. The original idea supporting SLIT was to achieve a prompt absorption of the vaccine through the sublingual mucosa as happens, for instance with nitroglycerine or nifedipine. Indeed, ten years later, biodistribution studies with radiolabelled allergens in humans (16, 17), consistently showed that the direct absorption of the extract through the oral mucosa is absent or negligible, and that the clinical effect should be rather ascribed to the interaction of the allergen with the mucosal immune system. Nonetheless, from a clinical point of view, SLIT was confirmed to be effective in several controlled studies utilizing either drops or tablets (18, 19), and the first paediatric study appeared in 1990 (18).

In the subsequent years, the number of DBPC-RCTs of SLIT rapidly increased, and SLIT began to be mentioned in official documents. In 1993 the European Academy of Allergy and Clinical Immunology (EAACI) stated in its position paper that SLIT could be regarded as a ‘promising route’ for desensitization (14). Five years later, the World Health Organization (WHO), based on the results of 8 DBPC-RCTs, stated that SLIT ‘may be considered as a viable alternative to the injection route in adults’ (20). In the same year, EAACI produced a position paper on non-injection routes, stating that the use of SLIT in clinical practice is justified because of the ascertained efficacy and the favourable safety profile (21). In 2001, the ARIA position paper accepted the use of SLIT in adults and children, as a valid alternative to SCIT (22) and this was confirmed by the ARIA update in 2008 (23). In SLIT, the allergen extract (prepared as drops or tablets) is kept under the tongue for 1–2 minutes and then swallowed: thus this route is also called sublingual-swallow. In some studies a different method was adopted: the allergen was kept under the tongue and then spat out (sublingual-spit) (24). Presently, only the sublingual-swallow route is used, therefore the acronym SLIT refers to the sublingual-swallow modality.

Nowadays, more than 50 DBPC-RCTs are available in the literature (25). Their results were also pooled and evaluated in several meta-analyses, which concluded that SLIT is significantly efficacious compared to placebo for rhinitis and asthma in adults and children (26–29). In the last 2 years, some adequately powered, well-designed DBPC-RCTs with grass drops (30) or tablets (31–33) including hundreds of patients, were published. These studies have confirmed the efficacy of SLIT for these allergens and, more importantly, have demonstrated a dose-effect relationship. In parallel to the clinical trials, post-marketing surveys (34), mechanistic investigations (35, 36), prevention studies (37, 38) and pharmaco-

© 2009 World Allergy Organization
economic assessments (39) were also published in the last 10 years, so that several aspects of SLIT were gradually clarified. Concerning safety, all clinical trials and post-marketing surveys have consistently agreed that SLIT is safe, and the majority of side effects are local and mild. In more than 20 years of clinical trials and everyday use, only six cases of anaphylaxis with SLIT have been reported, some of which were with mixtures of multiple unrelated allergens using non-standardized extracts, but two patients had a severe reaction following the first dose of a grass tablet. It has also been reported that use of multiple allergens for SLIT does not increase the rate of side effects in children (40). Furthermore, it has been suggested (41) that the safety profile of SLIT does not differ in children below the age of five years (a relative contraindication to SCIT).

SLIT is currently commercialized and used in most European and South American countries, as well as in Australia and Asian countries, but not in the USA. After an initial scepticism, due to the paucity of data, the USA scientific community also acknowledged the efficacy and safety of SLIT (42). Nevertheless, because there is so far no FDA-approved product for SLIT, this modality is not currently recommended in clinical practice in the USA, where the Practice Parameter states that ‘...there is no US Food and Drug Administration (FDA)-approved formulation for sublingual or oral immunotherapy in the United States. Therefore sublingual and oral immunotherapy should be considered investigational at this time.’ (43) Clinical trials for FDA registration in the USA are currently ongoing.

There are several aspects of SLIT still needing investigation and confirmation, including the optimal dose, the long-lasting effect, the preventive action and the exact mechanisms of action. This relative lack of information is not surprising if we consider that the history of SLIT is only 20 years in duration, and that the majority of studies were aimed at demonstrating the efficacy and safety of the treatment. Moreover, despite the number of clinical trials available, the value of SLIT in paediatric patients was a matter of debate (44), until the new positive adequately powered, well-designed DBPC-RCTs in children were reported (45, 46). The most important concern that still remains is to determine the optimal dose of allergen for SLIT, since the treatment has been shown effective over a very large range of doses (from 5 to 300 times the dose used for SCIT). However, it is clear that the effective doses of allergens for SLIT must be higher than for SCIT (in fact, we commonly speak of high-dose SLIT). On the other hand, the recently published large trials have indicated the correct direction for research; that is, dose-finding studies, standardization and uniformization of administration schedules, and the use of no-updosing regimens, which are more simple and patient-friendly. In the meantime, new opportunities are being explored with SLIT, including the possibility of using it in conditions other than respiratory allergy, namely food allergy (47) or Hymenoptera venom allergy (48) and the use of adjuvants and mucoadhesive substances. Other issues concern the indication of SLIT since there is no study assessing its efficacy in patients uncontrolled despite optimal pharmacotherapy (Slide 1).
References, Chapter 1

Historical development

Subcutaneous administration of increasing doses of a grass-pollen extract to treat allergic rhinitis was introduced by Leonard Noon in 1911 (1), with completion of his studies by John Freeman (2). Timothy grass was administered preseasonally or seasonally. This treatment was subsequently extended to other seasonal and perennial allergens and to the treatment of allergic asthma as well as rhinitis (3). Perennial administration largely replaced preseasonal treatment. While immunotherapy was initially used based on the clinical impression of efficacy, in the 1960s, definitive double-blind studies using ragweed pollen extract established that this was an effective form of treatment (4, 5).

Clinical efficacy

Many double-blind, placebo-controlled studies confirm the efficacy of subcutaneous injection allergen specific immunotherapy (SCIT) for treatment of both allergic rhinitis (6) and allergic asthma (7). These studies showed efficacy with extracts of various pollens, animal danders, house dust mites and fungi. For most classes of allergens, results support efficacy. However, although a few small size studies report positive results treating patients with Cladosporium (8) and Alternaria (9), studies supporting immunotherapy with many of the other available fungal allergen extracts are lacking (10).

Most controlled studies included in SCIT meta-analyses that show clinical efficacy of SCIT for allergic rhinitis and asthma include only a single allergen extract. Although
there are controlled studies that demonstrate efficacy for multiple allergens mixes for treatment of both allergic rhinitis (4) and allergic asthma (11), the studies are over 40 years old and there are no recent studies.

Mechanisms of action

Along with evidence of the efficacy has come an understanding of the probable mechanisms by which SCIT alters the disease processes. The earliest objective evidence of an immune response was the observation by Noon that immunotherapy reduced conjunctival sensitivity to timothy grass extract (1). Subsequent observations confirm a reduction of sensitivity to the injected allergen in the skin, or topical allergen on the conjunctivae, nasal mucosa and lungs (12, 13). Humoral responses were also observed, with first an increase and later a decline in specific IgE (14) and the generation of a blocking IgG antibody (15). However, studies failed to correlate these responses with clinical improvement (16).

Research today is focused on changes in T-lymphocyte responses and two distinct patterns of change, which may occur sequentially. An event that occurs within 7 days at high allergen doses (17) and 2–4 weeks at low allergen doses (18, 19) is the generation of regulatory T-cells secreting IL-10 and TGF-β(19) accompanied by suppression of allergen-induced cutaneous responses (17, 18).

This is followed at 6–12 weeks after initiating therapy by corresponding elevations in allergen-specific IgG4 and IgA at that parallel a more delayed suppression of allergen-induced early cutaneous responses (18, 19). A second and probably later immunologic response is immune deviation with a shift in the allergen specific T-cell response from predominantly Th1 to Th2 (20).

Impact on natural history

Considering the profound effect on the immune response to the administered allergen, it is not surprising that SCIT alters the natural course of allergic diseases. Several studies have demonstrated that SCIT, when administered to monosensitized patients, reduces the likelihood of developing new sensitivities (21–23). Moreover, the reduction in new sensitivities persists for at least 3 years following discontinuation of treatment (22, 23). A similar inhibitory effect occurs for the progression to asthma in children suffering from only allergic rhinitis (24). Timothy or birch pollen SCIT reduced the development of new onset asthma during the course of three years of treatment (25) and reduced the incidence of asthma with little loss of effect over 7 years of post-treatment observation. The beneficial effects of SCIT on allergy symptoms persist for years following its discontinuation. In a prospective, placebo-controlled trial, subjects who discontinued timothy grass SCIT after 3–4 years of treatment had the same level of symptoms during the next three grass pollen seasons as did the group who continued on monthly maintenance injections (26).

Alternative approaches to immunotherapy

Despite its clinical and disease-modifying efficacy, SCIT has some disadvantages: it is not ‘patient friendly’ because of the regular injections, which may arouse fear amongst children and some adults, and it has some indirect costs e.g. travel to the doctor’s office and lost work/school hours. The use of SCIT is also limited by the prolonged time for build-up required to reach maintenance levels of treatment and by adverse reactions. Attempts to improve the former have lead to trials with accelerated treatment schedules, while the latter has been addressed by modifying the allergen extracts or administering them by routes other than injection. Alternatives to the weekly build-up include administering clusters of 2 or 3 injections, usually 30 min apart, during a single clinic visit with visits spread over several weeks (27). This cluster schedule is not associated with an increased incidence of adverse reactions (28). However, a more rapid build-up, in which maintenance is achieved in just one or a few days, is associated with an increased incidence of reactions even when treatment subjects are premedicated (29). Extract modification includes adsorption of the extract to aluminium to achieve a depot effect (30) and modifying the extracts with formaldehyde (31) or glutaraldehyde (32) to reduce reactivity with specific IgE. Recombinant technology is currently being used to produce altered proteins (33) or peptides (34, 35) that retain T-cell epitopes but are no longer recognized by the specific IgE. Another approach is to combine the allergen with products, most extensively with monophosphoryl lipid A (36) or CpG motifs (37), that stimulate the innate immune system thereby favouring a Th1 response.

Another approach is to administer the extracts by an alternative route, for example, orally (38) or sublingually (39) slowing absorption and presenting the extract to a different component of the immune system. Other alternative approaches are to administer the extract directly on to the respiratory mucosa, either into the upper or lower respiratory tracts (40, 41). This approach can induce allergic respiratory symptoms, therefore, either modified extracts with decreased allergenicity are utilized (42) or cromolyn sodium is applied to the mucosa before the allergen is administered to block the allergic reaction (43).

References, Chapter 2


Chapter 3: Mechanisms of sublingual immunotherapy

- Allergen immunotherapy provides an opportunity to study antigen-specific tolerance in man.
- Subcutaneous immunotherapy suppresses allergic \textit{T}H2-mediated inflammation and increases antigen-specific IgG probably by induction of Tregs, immune deviation (\textit{T}H2 \rightarrow \textit{T}H1) and/or apoptosis of T cells.
- Oral mucosa is a natural site of immune tolerance (Langerhans cells, FcεR1, IL-10, IDO [indoleamine 2,3-dioxygenase]).
- Sublingual immunotherapy in optimal doses is effective and may induce remission after discontinuation and prevent new sensitizations, features consistent with induction of tolerance.
- Sublingual immunotherapy is associated with:
  - retention of allergen in sublingual mucosa for several hours.
  - marked early increases in antigen-specific IgE, blunting of seasonal IgE.
  - modest increases in antigen-specific IgG4 and IgE-blocking activity.
  - inhibition of eosinophils, reduction of adhesion molecules in target organ.
  - some evidence of increase in peripheral T cell IL-10.
- SLIT induces modest systemic changes consistent with SCIT, but additional local mechanisms in oral mucosa and/or regional lymph nodes are likely important.

Immunotherapy provides a unique opportunity to study the evolution of antigen-specific tolerance in man. Understanding the underlying mechanisms may lead to the development of vaccines with greater efficacy and allow the identification of biomarkers that may predict the clinical response to treatment. Whereas there is considerable knowledge concerning mechanisms of SCIT, information on the mechanisms of SLIT (1, 2) is less well-advanced.

Subcutaneous immunotherapy

Subcutaneous immunotherapy in patients with pollen rhinitis is associated with transient increases in allergen-specific IgE, blunting of seasonal increases in IgE (3), and increases in allergen-specific IgG, particularly IgG4 (3-5), and IgA (5, 6). Serum antibody concentrations appear to relate more to the dose of allergen administered rather than correlate with clinical improvement (7). Immunoreactive IgG populations include antibodies with a wide range of clonality and/or affinity. In contrast, functional assays of IgG are more likely to represent that proportion of circulating IgG that is biologically (and therefore clinically) relevant. For example, serum obtained following SCIT has been shown to inhibit allergen-IgE binding to B-cells (8), an effect mediated largely by IgG4. This system has provided an \textit{in vitro} assay of the ability of ‘blocking’ antibodies to inhibit IgE-facilitated antigen presentation. Similarly, basophil histamine release can be used to measure the functional ability of IgG to inhibit IgE-dependent activation and mediator release (9), either via competition with IgE for allergen and/or by stimulation of surface IgG-inhibitory receptors present on basophils and mast cells (10). Whereas post-immunotherapy serum IgA is unable to block allergen-IgE binding to B cells, by triggering surface IgA receptors on monocytes, IgA releases the inhibitory cytokine IL-10 (6). Subcutaneous immunotherapy has been shown to decrease the numbers of effector cells at mucosal sites, both during seasonal allergen exposure (11) and after allergen challenge (12), as well as reducing effector cell reactivity \textit{in vitro} (9).

It has been suggested that allergic disease may result from a relative imbalance between the effects of regulatory T cells and Th2 cells (13). Regulatory T cells can be divided into ‘naturally occurring’, thymus derived CD4+CD25+ cells, which are positive for the transcription factor Foxp3, and ‘adaptive’ regulatory cells, either Tr1 IL-10 secreting cells, or Th3 TGF-β secreting cells (14). Subcutaneous immunotherapy in patients with grass pollen (15) and mite (5) allergy results in increased IL-10 in allergen-stimulated peripheral T cell cultures. Additionally, subcutaneous immunotherapy has been associated with immune deviation in favour of \textit{T}H1 responses (16, 17). However, changes in T cell responses to allergen have not been universally observed in cells derived from peripheral blood (18, 19). Studies of local nasal T cell responses have identified skewing of cytokine profiles in favour of \textit{T}H1 responses (20, 21) and local...
increases in IL-10+ (3) and TGF-β+ T cells (6) and Foxp3+ phenotypic T regs (22) within the nasal mucosa.

The oral mucosa as a tolerogenic organ

The local environment in the mouth is regarded as a site of natural immune tolerance (2). Despite continued exposure to micro-organisms and multiple foreign substances, the oral mucosa remains non-inflamed with a relative paucity of effector cells compared to other mucosal sites. The presence of a sophisticated network of Langerhans cells epithelial cells and monocytes capable of producing IL-10, TGF-β and activins (23–26) may play a role in the maintenance of oral tolerance. Local secretory IgA may also have an anti-inflammatory effect (6).

Human oral Langerhans cells constitutively express FcεR1, Major Histocompatibility Complex (MHC) class I and II and co-stimulatory and co-inhibitory molecules (27), properties consistent with highly efficient antigen presentation to T cells. Cross-linking of FcεR1 on monocytes induces production of IL-10 (28) and indoleamine 2, 3-dioxygenase (29), the latter associated with reduced tryptophan levels and consequent impaired T-cell stimulatory capacity. Human oral mucosal Langerhans cells produce substantial IL-10. Ligation of Toll-like receptor 4 on isolated human oral Langerhans cells enhanced IL-10 production (30) and in co-culture experiments decreased T-cell proliferation (in mixed lymphocyte reactions) with a parallel induction of T-cells with a regulatory phenotype. One hypothesis is that innate receptors enhance the tendency toward tolerance to antigens presented in the microbe-rich oral environment. Interaction between dendritic cells, Langerhans cells and T cells may occur locally within the oral mucosa (27, 30), whereas animal studies (26) imply that the principle site for such interactions is within the regional lymph nodes. It is possible that oral Langerhans cells interact with naïve T-cells, resulting in the generation of allergen-specific regulatory T-cells. Alternatively, interaction with allergen-specific memory T_{IL}2 cells may result in down regulation of function or redirection to a regulatory or T_{IL}1 phenotype. Downstream events, as in subcutaneous immunotherapy, may include B-cell class-switch to IgG4 and IgA rather than IgE, and down regulation of mucosal effector cells. It remains to be determined whether such mechanisms operate in vivo during sublingual immunotherapy.

Immunological effects of sublingual immunotherapy in man

Clinical studies of sublingual immunotherapy are heterogeneous, involving different allergens, doses and durations of therapy. A wide range of laboratory techniques has been used to measure putative immunological mechanisms: this may explain, at least in part, the variability of results obtained. Tracer studies of radio-iodine labelled allergen have shown that allergen may be retained within the oral mucosa for at least 2 hours (31) and up to 18–20 hours (32) following sublingual administration, affording opportunities for both local as well as systemic effects on the immune system.

Specific antibody levels

During pollen SLIT, increases in allergen-specific IgE occur within weeks although do not appear to be associated with adverse events. These early increases are followed by blunting of seasonal rises in IgE. There follows an increase in allergen-specific IgG1/IgG4. These elevations are both time- and allergen-dose dependent (33) and progressive for at least 2 years (34) although of lower magnitude than observed during SCIT (3, 35). Some studies have shown increases in specific IgG4 in the absence of demonstrable efficacy (36), whereas others have shown no difference in IgG levels, likely related to the lower allergen doses employed (37), particularly in relation to mite SLIT (38–41). These findings raise the issue of causality versus bystander effects. In functional assays, sera obtained after grass pollen SLIT was able to inhibit IgE-binding in vitro (34).

Effector cells

Sublingual mite immunotherapy (42) was associated with decreases in conjunctival eosinophils, neutrophils and epithelial expression of intercellular adhesion molecule-1 (ICAM-1) and accompanied by a reduction in circulating eosinophil cationic protein (ECP). Similarly, SLIT in Parietaria-sensitive patients reduced eosinophils, neutrophils and ICAM-1 expression in the nasal mucosa (43). Decreases in ECP (42, 44) and eosinophils have been observed in several but not all (40) studies. One study investigated the effects of high dose grass pollen SLIT on immune cells within the sublingual mucosa (45). No differences in total T-cells, CD1a+ dendritic cells or macrophages were detectable and no differences in IL-12 messenger ribonucleic acid (mRNA)+ cells, whereas the T reg phenotype was not assessed. Interestingly, mast cells and eosinophils are present, albeit in low numbers, within the buccal/sublingual mucosa (46, 47) and corresponding activation markers such as tryptase and ECP are detectable within salivary secretions (48), providing a plausible explanation for local itching and swelling that may occur after sublingual allergen administration.

T cells and cytokines

Studies of peripheral T cell responses to inhalant allergens, before/after SLIT have been highly variable. Decreased T cell proliferative responses in birch (49) and grass-treated (50) patients have been observed in some but not other studies (37, 51) and even less convincing trends for house dust mite-treated patients (52, 53). Similarly
results for T cell cytokine production at both messenger RNA and protein levels have been highly variable, with some studies showing an increase in interferon gamma and/or decreases in Th2 cytokines (49, 51, 53–55) whereas others show no changes (37, 41, 50). A more consistent finding (as in SCIT) has been increases in peripheral T cell IL-10 production which have been observed at protein (49, 56, 57) and mRNA levels (54) in several, but not all, studies (37). An elegant study by Bohle (49) on small numbers of birch-treated patients showed a reduction in proliferative responses to Bet v1 that was accompanied by increases in IL-10. This suppression was reversed by anti-IL-10 or depletion of CD25+ cells from the cultures which implied involvement of regulatory T cells. Further immunological studies on larger numbers of subjects using validated clinical protocols are needed. One such recently published DBPC-RCT evaluated HDM SLIT in 30 HDM-allergic subjects for more than 12 months. The study reported suppression of IL-5 production and HDM-allergic subjects for more than 12 months. The published DBPC-RCT evaluated HDM SLIT in 30 validated clinical protocols are needed. One such recently immunological studies on larger numbers of subjects using validated clinical protocols are needed. One such recently published DBPC-RCT evaluated HDM SLIT in 30 HDM-allergic subjects for more than 12 months. The study reported suppression of IL-5 production and allergen specific CD4+ T cell proliferation via TGF-β, transient increase in CD4+ CD25+ Foxp3+/CD127lo T regs with functional suppressor activity and allergen specific antibody isotype switching to IgG4 in clinically effective HDM SLIT (58).

Conclusion

A consensus is emerging that SLIT may involve similar mechanisms to SCIT with allergen-driven altered T cell responses underlying suppression of allergic inflammation and the modest changes observed in circulating antibody levels, particularly allergen-specific IgG4. Although results vary, the underlying event is likely to involve induction of a population of IL-10 producing regulatory T cells. Alternative mechanisms include immune deviation in favour of Th1 responses and apoptosis and/or anergy of antigen-specific T cells. Studies of local T cell responses in the allergic mucosa may yield more definitive information. In contrast to murine studies, it is difficult to assess in man the likely additional local mechanisms involving T cell-dendritic cell interactions within the oral mucosa and/or local lymph nodes.

References, Chapter 3


G. Walter Canonica


Chapter 4: Clinical efficacy of sublingual immunotherapy

- Up to June 2009, there were 60 DBPC-RCTs of SLIT, of which 41 conducted with grass or HDM extracts. The majority of these studies is heterogeneous for allergen dose, duration and patients’ selection.
- 48 trials provided overall positive results and 12 were totally or almost totally negative.
- The literature suggests that overall, SLIT is effective, although differences exist among allergens.
- The available meta-analyses are in favour of SLIT (rhinitis in adults, asthma and rhinitis in children), although the conclusions are limited by the great heterogeneity of the studies.

• The clinical efficacy and dose dependency have been demonstrated, in adequately powered, well-designed DBPC-RCTs, for rhinoconjunctivitis due to grass pollen.
• Dose finding trials and large studies with properly defined outcomes and sample size are needed for the other relevant individual allergens.

General aspects

As in the case of SCIT, the evaluation of the clinical efficacy of SLIT relies on the assessment of symptom severity and rescue medication use during the natural exposure to allergens. This requires the adoption of a rigorous methodological design, which is the DBPC-RCT. Moreover, as suggested by WAO (1), an ideal study should include:

- only monosensitized patients
- a baseline assessment (i.e. a run-in pollen season)
- adequate pollen counts in trials on pollen-allergic subjects
- a sample size calculation for adequate power of the study
- a balanced symptom/medication score evaluation
- an adequate duration and allergen dose

For practical (time consumption, budget, and rarity of monosensitized subjects) and historical reasons (the earliest studies were performed more than 10 years ago), only few recent trials fulfill the above mentioned criteria. Therefore, the majority of the published RCTs can be considered as suggestive, rather than demonstrative. Nonetheless, the RCTs taken together provide relevant and reliable information.

DBPC-RCTs (Table 4-1)

The number of DBPC-RCTs is increasing: as shown in Table 4-1, there were 60 DBPC-RCTs performed since 1986 (2–61), when the first controlled trial appeared (2). Of these, 26 were performed with grass extracts, 15 with mite, five with *Parietaria*, three with cat and the remaining 11 trials with other pollen extracts. The duration of the trials ranged between 4 months and 4 years, 19 of them being of 6 months duration or less. The majority of studies was conducted in patients with rhinitis or rhinitis plus asthma. Only a few studies (15, 21, 31, 38, 44, 46, 61) were specifically designed to evaluate the efficacy in asthma, and one study dealt with allergic conjunctivitis (28). When stated, the dose used in the clinical trials ranged between five and 375 times that used in an equivalent SCIT course, but the monthly and cumulative doses of major allergen(s) was largely variable from trial...
<table>
<thead>
<tr>
<th>Author (ref), year</th>
<th>Age range</th>
<th>Patients A/P*</th>
<th>Dropout A/P*</th>
<th>Allergen</th>
<th>Duration</th>
<th>Dose preparation</th>
<th>Dose vs SCIT</th>
<th>Disease†</th>
<th>Manufac-</th>
<th>Main positive results</th>
<th>No change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scadding and Brostoff (2), 1986</td>
<td>20/20</td>
<td>0/0</td>
<td>HDM</td>
<td>18 months</td>
<td>NA</td>
<td>R</td>
<td>Reduction in symptoms in 72% patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tari et al. (3), 1990</td>
<td>5–12</td>
<td>30/28</td>
<td>HDM</td>
<td>18 months</td>
<td>15.4 mg Der p 1/month Aqueous/phenol</td>
<td>5</td>
<td>RA</td>
<td>ALK</td>
<td>Symptom score 12 months: (P &lt; 0.05); 18 months: (P &lt; 0.001). Drug score 20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nelson et al. (4), 1993</td>
<td>20–55</td>
<td>20/21</td>
<td>Cat</td>
<td>3.5 months</td>
<td>1.2 mg Fel d 1/ month</td>
<td>40</td>
<td>RA</td>
<td>HS</td>
<td>Drugs/symptoms not evaluated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sabbah et al. (5), 1994</td>
<td>13–51</td>
<td>29/29</td>
<td>Grass</td>
<td>4 months</td>
<td>210 µg Dac g 5 glyc-erosaline</td>
<td>50</td>
<td>R</td>
<td>STA</td>
<td>Rhinitis (P &lt; 0.05); Ocular (P &lt; 0.01); Drugs (P &lt; 0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feliziani et al. (6), 1995</td>
<td>14–48</td>
<td>18/16</td>
<td>Grass</td>
<td>4 months</td>
<td>19 µg grass/month Glycerol-phenol</td>
<td>6</td>
<td>RA</td>
<td>ALK</td>
<td>Symptoms: Asthma (P = 0.02); rhinitis (P = 0.01); Overall (P = 0.008); Medications: overall (P = 0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troise et al. (7), 1995</td>
<td>17–60</td>
<td>15/16</td>
<td>Parietaria</td>
<td>10 months</td>
<td>1 µg Par j 1/ month</td>
<td>20</td>
<td>R</td>
<td>ALK</td>
<td>P &lt; 0.05 vs placebo in pollen season</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirsch et al. (8), 1997</td>
<td>6–16</td>
<td>13/14</td>
<td>HDM</td>
<td>1 year</td>
<td>48 µg Der p 1/month Cumulat: 570 µg Glycerol</td>
<td>5</td>
<td>RA</td>
<td>ALP</td>
<td>P = 0.05 vs placebo for asthma only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passalacqua et al. (13), 1998</td>
<td>15–46</td>
<td>10/10</td>
<td>HDM (monoid)</td>
<td>2 year</td>
<td>18 000 AU/month Tablets</td>
<td>20</td>
<td>R</td>
<td>LDF</td>
<td>Rhinitis symptoms in winter (P &lt; 0.05). Meds not assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vourdas et al. (11), 1998</td>
<td>7–17</td>
<td>34/32</td>
<td>1/2</td>
<td>Olive</td>
<td>2 season</td>
<td>1215 µg Ole e 1/month Glycerophenol</td>
<td>300</td>
<td>RA</td>
<td>STA</td>
<td>Dyspnea score (0.04 first year and 0.03 second year); Conjunctivitis P &lt; 0.05 second season</td>
<td></td>
</tr>
<tr>
<td>Clavel et al. (9), 1998</td>
<td>8–55</td>
<td>62/58</td>
<td>Grass</td>
<td>6 months</td>
<td>288 µg Phil p 5/ month Aqueous</td>
<td>100</td>
<td>R</td>
<td>STA</td>
<td>Medication score (P &lt; 0.01); Oral steroids (P &lt; 0.05); Asthma symptoms (P &lt; 0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (ref), year, year</td>
<td>Age range</td>
<td>Patients A/P*</td>
<td>Drop out A/P*</td>
<td>Allergen</td>
<td>Duration</td>
<td>Dose preparation</td>
<td>Dose vs SCIT</td>
<td>Disease†</td>
<td>Manufacturer</td>
<td>Main positive results</td>
<td>No change</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>---------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Horak et al. (10), 1998</td>
<td>16–48</td>
<td>18/16</td>
<td></td>
<td>Birch</td>
<td>4 months</td>
<td>62 μg Bet v 1/month Glycerophenol</td>
<td>NS</td>
<td>R</td>
<td>ALK</td>
<td>Anterior rhinomanom. Vienna Challenge Chamber. Symptom-medication not evaluated</td>
<td></td>
</tr>
<tr>
<td>Hordijk et al. (12), 1998</td>
<td>18–45</td>
<td>27/30</td>
<td></td>
<td>Grasses</td>
<td>6 months</td>
<td>4250 BU/month Glycerinated</td>
<td>NS</td>
<td>R</td>
<td>ART</td>
<td>Symptom decreased 29% at peak season (0.03) Medication score, Symptom score whole season</td>
<td></td>
</tr>
<tr>
<td>Bousquet et al. (15), 1999</td>
<td>15–37</td>
<td>32/33</td>
<td>17/18</td>
<td>HDM</td>
<td>2 years</td>
<td>300 μg Der p 1/month Glycerosaline 200</td>
<td>A</td>
<td>STA</td>
<td></td>
<td>At 24 months asthma symptoms (0.02), FEV₁ (0.01), PEF (0.01), QoL</td>
<td>Mean daily drug score; asthma symptom score; patients evaluation</td>
</tr>
<tr>
<td>Passalacqua et al. (14), 1999</td>
<td>15–42</td>
<td>15/15</td>
<td>1/2</td>
<td>Parietaria</td>
<td>8 months</td>
<td>3.6 μg Par j 1/month. Cumulat: 16 μg Glycerophenol 7</td>
<td>R</td>
<td>ALK</td>
<td></td>
<td>vs baseline: symptoms (P = 0.16) drug intake (P = 0.08)</td>
<td></td>
</tr>
<tr>
<td>Pradalier et al. (17), 1999</td>
<td>6–25</td>
<td>60/59</td>
<td>2/4</td>
<td>Grass</td>
<td>5 months</td>
<td>255 μg Phl p5/months Cumulat: 935 μg Glycerophenol 150</td>
<td>RA</td>
<td>STA</td>
<td></td>
<td>Asthma symptomatic days (0.02); % patients with asthma (0.05); ocular symptoms (0.05); albuterol (0.01).</td>
<td>Total medication score; oral steroids (P 0.05); patients' assessment</td>
</tr>
<tr>
<td>La Rosa et al. (18), 1999</td>
<td>6–14</td>
<td>20/21</td>
<td>4/4</td>
<td>Parietaria</td>
<td>6 months 2 seasons</td>
<td>2730 μg Par j 1/month Cumulat: 52.5 μg Glycerophenol 375</td>
<td>RA</td>
<td>STA</td>
<td></td>
<td>Rhinitis score 2 years (0.02) Medication scores, Rhinitis score first year</td>
<td></td>
</tr>
<tr>
<td>Purello et al. (16), 1999</td>
<td>14–50</td>
<td>14/16</td>
<td>0/0</td>
<td>Parietaria</td>
<td>8 months</td>
<td>1.5 μg Par j 1/month Cumulat: 12 μg</td>
<td>3</td>
<td>RA</td>
<td>ALK</td>
<td>Rhinitis and asthma scores (P = 0.01); medication score (P = 0.05)</td>
<td></td>
</tr>
<tr>
<td>Pajno et al. (21), 2000</td>
<td>8–15</td>
<td>12/12</td>
<td>0/3</td>
<td>HDM</td>
<td>2 years</td>
<td>10.4 μg Der p 1/month Cumulat: 360 μg Aqueous</td>
<td>4</td>
<td>A</td>
<td>ALK</td>
<td>Asthma symptom score second year (P &lt; 0.01) night symptom (0.01) medication score first and second year (&lt;0.01) VAS second year (&lt;0.01)</td>
<td>Asthma symptoms first year; VAS first year</td>
</tr>
</tbody>
</table>
Table 4-1 (Continued)

<table>
<thead>
<tr>
<th>Author (ref), year</th>
<th>Age range</th>
<th>Patients A/P*</th>
<th>Dropout A/P*</th>
<th>Allergen</th>
<th>Duration</th>
<th>Dose preparation</th>
<th>Dose vs SCIT</th>
<th>Manufacturer</th>
<th>Main positive results</th>
<th>No change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guez et al. (20), 2000</td>
<td>6–51</td>
<td>38/37</td>
<td>8/15</td>
<td>HDM</td>
<td>2 years</td>
<td>91 µg Der p 1/ month Cumulat: 2.2 mg Aqueous</td>
<td>R</td>
<td>STA</td>
<td>Higher dropout rate in placebo</td>
<td>Total symptom score, Medication score, VAS score</td>
</tr>
<tr>
<td>Caffarelli et al. (22), 2000</td>
<td>4–14</td>
<td>24/20</td>
<td>0/4</td>
<td>Grass (monoid)</td>
<td>3 months</td>
<td>12 000 AU/month 37 000 AU</td>
<td>RA</td>
<td>LOF</td>
<td>Total symptom score (&lt;0.05), Asthma score (&lt;0.05), Symptom-med scores for high pollen count</td>
<td>Medication score, Ocular score</td>
</tr>
<tr>
<td>Yuksel et al. (19), 1999</td>
<td>5–15</td>
<td>21/18</td>
<td>NS</td>
<td>Grass</td>
<td>4 months</td>
<td>Cumulat 210 µg NS Dac g 5 Glycero-saline</td>
<td>RA</td>
<td>STA</td>
<td>Antihistamine (&lt;0.05), Rhinitis score (&lt;0.01), Overall efficacy by physician (P = 0.04)</td>
<td>Beta2 use, Asthma scores, PEF</td>
</tr>
<tr>
<td>Ariano et al. (23), 2001</td>
<td>19–50</td>
<td>10/10</td>
<td>0/0</td>
<td>Cypress</td>
<td>8 months</td>
<td>30 000 RU/month, Cumulat 300 000, Glycero-Aqua</td>
<td>RA</td>
<td>ANA</td>
<td>Symptoms and medications score (&lt;0.05)</td>
<td></td>
</tr>
<tr>
<td>Bahceciler et al. (24), 2001</td>
<td>7–15</td>
<td>8/7</td>
<td>0/0</td>
<td>HDM</td>
<td>6 months</td>
<td>72 µg Der p 1/month Cumulat: 0.56 mg Aqueous</td>
<td>NS</td>
<td>STA</td>
<td>Asthma score (P = 0.05), Beta2 (P = 0.028), PEF (P = 0.049), Exacerbation (P = 0.007)</td>
<td>Nasal symptom score, ICS (P = 0.06), NCS vs placebo</td>
</tr>
<tr>
<td>Voltolini et al. (25), 2001 (second year open)</td>
<td>15–52</td>
<td>15/15 first, 24/10 second</td>
<td>0/1</td>
<td>Birch</td>
<td>24 months</td>
<td>90 µg Bet v 1/month Glycrophorinol</td>
<td>RA</td>
<td>ALK</td>
<td>Symptoms vs baseline (P = 0.001); drugs vs baseline (P = 0.007); second year: combined scores vs baseline and placebo</td>
<td>Symptoms and drugs scores vs placebo</td>
</tr>
<tr>
<td>Sanchez et al. (26), 2001</td>
<td>18–50</td>
<td>20/20</td>
<td>0/0</td>
<td>Cat</td>
<td>1 year</td>
<td>0.3 µg Fel d 1/ day Glycero-saline</td>
<td>RA</td>
<td>CBF</td>
<td>Symptom score (&lt;0.01)</td>
<td>Medication not assessed</td>
</tr>
<tr>
<td>Author (ref), year</td>
<td>Age range</td>
<td>Patients A/P*</td>
<td>Dropout A/P*</td>
<td>Allergen</td>
<td>Duration</td>
<td>Dose preparation</td>
<td>Dose vs SCIT</td>
<td>Disease †</td>
<td>Manufac- turer</td>
<td>Main positive results</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------------</td>
<td>-------------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Lima et al. (27), 2002</td>
<td>16–48</td>
<td>26/23</td>
<td>2/1</td>
<td>Grass</td>
<td>18 months</td>
<td>0.9 mg Phl p 5/ month Glycerinate</td>
<td>R</td>
<td>ALK</td>
<td>Patient assessment (P = 0.02)</td>
<td>Rescue meds, Symptom score</td>
</tr>
<tr>
<td>Montemousque et al. (28), 2003</td>
<td>6–60</td>
<td>26/19</td>
<td>4/11</td>
<td>HDM</td>
<td>24 months</td>
<td>Cumulat: 2.2 mg Der p 1, Glycer- aqeous</td>
<td>NS</td>
<td>C</td>
<td>STA</td>
<td>Conjunctival provocation, Conjunctival score, Nasal score</td>
</tr>
<tr>
<td>Andre et al. (29), 2003</td>
<td>6–55</td>
<td>48/51</td>
<td>7/4</td>
<td>Ragweed 3 doses</td>
<td>7 months</td>
<td>1.4–4.0 mg Amb a 1/ month Solution/tablets</td>
<td>NS</td>
<td>R</td>
<td>STA</td>
<td>Only highest dose: Rhinitis score (P = 0.05), Ocular score (P = 0.04), Oral steroids (P = 0.05)</td>
</tr>
<tr>
<td>Ippoliti et al. (30), 2003</td>
<td>5–12</td>
<td>47/39</td>
<td>0/0</td>
<td>HDM</td>
<td>6 months</td>
<td>10.4 µg Der p 1/month Cumulat: 57 µg Glycerophenol</td>
<td>5</td>
<td>AR</td>
<td>ALK</td>
<td>Asthma score (&lt;0.01), Rhinitis score (&lt;0.01), FEV1 (&lt;0.01), Drugs not assessed</td>
</tr>
<tr>
<td>Pajno et al. (31), 2003 (vs placebo and control)</td>
<td>8–14</td>
<td>15/15</td>
<td>1/2</td>
<td>Parietaria Add on to ICS</td>
<td>13 months</td>
<td>1.56 µg Par j 1/ month Cumulat: 23 µg Glycerosaline</td>
<td>NS</td>
<td>RAC</td>
<td>ALK</td>
<td>Ocular score 0.025 vs controls; VAS (P = 0.037) vs placebo</td>
</tr>
<tr>
<td>Wuthrich et al. (32), 2003</td>
<td>6–13</td>
<td>10/12</td>
<td>4/2</td>
<td>Grass</td>
<td>2 years</td>
<td>6 µg/month Glycerophenol</td>
<td>NS</td>
<td>RA</td>
<td>ALK</td>
<td>Drug score second year (0.05)</td>
</tr>
<tr>
<td>Tonnel et al. (33), 2004</td>
<td>7–45</td>
<td>15/17</td>
<td>5/9</td>
<td>HDM</td>
<td>2 years</td>
<td>53 µg Der p 1/month Cumulat: 57 µg Solution-tablets</td>
<td>NS</td>
<td>R</td>
<td>STA</td>
<td>Rhinitis score first year (&lt;0.03); second year (&lt;0.02)</td>
</tr>
<tr>
<td>Bufe et al. (34), 2004</td>
<td>6–13</td>
<td>68/74</td>
<td>0/10</td>
<td>Grass 1 year + 2 years open</td>
<td>1 year + 2 years open</td>
<td>273 µg Phl p 5/ 10 month Cumulat: 9.6 mg Solution</td>
<td>RA</td>
<td>HAL</td>
<td>Symptom + drug score P = 0.046 vs placebo: only third year and only most severe group</td>
<td></td>
</tr>
<tr>
<td>Smith et al. (35), 2004</td>
<td>18–60</td>
<td>48 1 year, 46 2 years, 46 placebo</td>
<td>35</td>
<td>Grass 1 year 2 years</td>
<td>329 µg Dac g 5/ 300 month Solution-tablets</td>
<td>R</td>
<td>STA</td>
<td>Second year: sneezing (0.05) and rhinorhea (0.001)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sub-lingual immunotherapy
Table 4.1 (Continued)

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Allergen</th>
<th>Duration</th>
<th>Dose preparation</th>
<th>Dose vs SCIT</th>
<th>Manufacturer†</th>
<th>Main positive results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rollinck-Werninghaus et al. (36), 2004</td>
<td>Grass</td>
<td>3 years</td>
<td>6 mg major/mo</td>
<td>NS</td>
<td>A</td>
<td>Drug score (0.025): Symptom – drug score (0.049); Drug score: Ocular, nasal, bronchial symptom score</td>
</tr>
<tr>
<td>Bowen et al. (37), 2004</td>
<td>Ragweed</td>
<td>4 months</td>
<td>3.1–9.4 mg Amb a 1/mo</td>
<td>NS</td>
<td>R</td>
<td>Drug score – 28% (0.012): Symptoms and drug scores for the 2 low doses</td>
</tr>
<tr>
<td>Durham et al. (41), 2006</td>
<td>Grass</td>
<td>6 months</td>
<td>15 mg (136 pts)</td>
<td>NS</td>
<td>R</td>
<td>Drug score – 21% (0.002): Only highest dose</td>
</tr>
<tr>
<td>Passalacqua et al. (40), 2006</td>
<td>HDM (monoid)</td>
<td>2 years</td>
<td>8,000 AU/mo</td>
<td>Tablets</td>
<td>NS</td>
<td>First year: total symptoms (0.05), obstruction (0.05), medication (0.03). Second year: medications (0.03); General wellbeing</td>
</tr>
<tr>
<td>Niu et al. (38), 2006</td>
<td>HDM</td>
<td>6 months</td>
<td>320 mg Der p 1/mo</td>
<td>Cumulat.</td>
<td>1.7 mg Glycerosaline</td>
<td>Oral steroids: Nighttime (0.03), Daytime (0.03), PEFR (0.07), FEV1 and PVC between groups</td>
</tr>
<tr>
<td>Dahl et al. (39), 2006</td>
<td>Grass</td>
<td>5 months</td>
<td>450 mg Phl p 5/mo</td>
<td>Tablets</td>
<td>NS</td>
<td>Asthma symptoms and medications: Asthma symptoms (0.001), Oral steroids: Total symptoms (0.01), Oral steroids: Well days (0.04); Skin test (0.05)</td>
</tr>
<tr>
<td>Valovirta et al. (42), 2006</td>
<td>Hazelnut, birch, elm (two do-ses)</td>
<td>Weekly dose of major allergens, Group 1: 3.6 mg, Group 2 (18 months): 30 mg</td>
<td>With higher dose: Asthma symptoms, Oral steroids, Total symptoms, Total symptoms during birch season</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1 (Continued)
<table>
<thead>
<tr>
<th>Author (ref), year</th>
<th>Age range</th>
<th>Patients A/P*</th>
<th>Dropout A/P*</th>
<th>Allergen</th>
<th>Duration</th>
<th>Dose preparation</th>
<th>Dose vs SCIT</th>
<th>Disease†</th>
<th>Manufac- turer</th>
<th>Main positive results</th>
<th>No change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dahl et al. (43), 2006</td>
<td>23–35</td>
<td>315/318</td>
<td>42/46</td>
<td>Grass</td>
<td>6 months</td>
<td>450 μg Phl p 5/ NS months, Cumulat: 2.7 mg, Tablets</td>
<td>NS</td>
<td>RC</td>
<td>ALK</td>
<td>RC symptom −30% (0.001), RC drugs −38% (0.001), Well days −52% (0.004), VAS</td>
<td>Day symptoms, drugs, FEV&lt;sub&gt;1&lt;/sub&gt;, PEF vs placebo</td>
</tr>
<tr>
<td>Lue et al. (44), 2006</td>
<td>6–12</td>
<td>10/10</td>
<td>0/0</td>
<td>HDM</td>
<td>8 months</td>
<td>Cumulat: 1.7 mg Der p 1, Glycerosaline</td>
<td>NS</td>
<td>A</td>
<td>STA</td>
<td>Night symp (0.04) vs pl Day symp (0.04), FEV&lt;sub&gt;1&lt;/sub&gt;, drugs (0.01) vs b/line</td>
<td></td>
</tr>
<tr>
<td>Palma-Carlos et al. (45), 2006</td>
<td>19–43</td>
<td>17/16</td>
<td>4/9</td>
<td>Grass (monoid)</td>
<td>2 year</td>
<td>8000 AU/month</td>
<td>NS</td>
<td>RC</td>
<td>LOF</td>
<td>Conjunctivitis, rhinorhea, sneezing (&lt;0.05) at the second year; nasal reactivity (0.03) at the second year</td>
<td>Symptoms and nasal reactivity at the first year</td>
</tr>
<tr>
<td>Pham-Ti et al. (46), 2007</td>
<td>5–11</td>
<td>55/56</td>
<td>11/8</td>
<td>HDM</td>
<td>18 months</td>
<td>810 μg Der p 1/ month Cumulat: 6.9 mg, Glycerosaline</td>
<td>A</td>
<td>STA</td>
<td></td>
<td>SPT (P = 0.01), QoL (P &lt; 0.01)</td>
<td>Asthma symptoms, Asthma medication, Asthma free days, (low: both groups)</td>
</tr>
<tr>
<td>Vervloet et al. (48), 2007</td>
<td>19–60</td>
<td>38/38</td>
<td>2/4</td>
<td>Juniper</td>
<td>4 months, 2 seasons</td>
<td>6 mg Jun a 1/month, Glycerosalmous</td>
<td>NS</td>
<td>A</td>
<td>STA</td>
<td>First and second season: Nasal steroids (0.01), Total medications (0.04), IgE and IgG4</td>
<td>Both seasons: Total and single symptom scores. Single medication</td>
</tr>
<tr>
<td>Roeder et al. (47), 2007</td>
<td>6–18</td>
<td>108/96</td>
<td>26/24</td>
<td>Grass</td>
<td>2 years</td>
<td>168 μg Lol p 5/ month Cumulat: 4.5 mg Solution</td>
<td>NS</td>
<td>RC</td>
<td>ARTU</td>
<td></td>
<td>Mean daily score, Symptom-free days, Medication free days, QoL</td>
</tr>
<tr>
<td>Alvarez-Cuesta et al. (49), 2007</td>
<td>16–51</td>
<td>25/25</td>
<td>8/9</td>
<td>Cat</td>
<td>1 year</td>
<td>Cumulat: 17.1 μg Fel d 1, Glycerosaline</td>
<td>2</td>
<td>RC</td>
<td>CBF</td>
<td>Bronchial, nasal, conjunctival symptoms and PEF vs baseline (&lt;0.05) at room challenge</td>
<td></td>
</tr>
</tbody>
</table>
Table 4-1 (Continued)

<table>
<thead>
<tr>
<th>Author (ref), year</th>
<th>Age range</th>
<th>Patients A/P*</th>
<th>Dropout A/P*</th>
<th>Allergen</th>
<th>Duration</th>
<th>Dose preparation</th>
<th>Dose vs SCIT</th>
<th>Disease †</th>
<th>Manufac-</th>
<th>Main positive results</th>
<th>No change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Didier et al. (50), 2007</td>
<td>25–47</td>
<td>472/156</td>
<td>59/10</td>
<td>Grass, 3 doses</td>
<td>6 months</td>
<td>240 μg (157 pt)/month, 750 μg (155 pt)/month, 1.2 mg (160 pt)/month Tablets</td>
<td>NS</td>
<td>RC</td>
<td>STA</td>
<td>For 300 &amp; 500 IR, Total/individual symptom/drug scores (&lt;0.001); RQLQ; medication-free days</td>
<td></td>
</tr>
<tr>
<td>Horiguchi et al. (51), 2007</td>
<td>18–50</td>
<td>43/24</td>
<td>2/2</td>
<td>Jap cedar</td>
<td>7 months</td>
<td>6 μg Cry j 1/month Solution, Spit</td>
<td>100</td>
<td>RC</td>
<td>TORI</td>
<td>Symptoms + drugs (&lt;0.05); sneezing, obstruction, rhinorrhea (P &lt; 0.05); IgG4</td>
<td></td>
</tr>
<tr>
<td>De Blay et al. (52), 2007</td>
<td>12–41</td>
<td>61/57</td>
<td>8/8</td>
<td>Grass</td>
<td>10 months</td>
<td>250 μg group 5/ month Cumulat: 2.5 mg, Solution</td>
<td>NS</td>
<td>RC</td>
<td>ALB</td>
<td>Medications (0.02); symptoms in pats without asthma (0.01); GoL: IgG4</td>
<td>Global symp score, Global medication score</td>
</tr>
<tr>
<td>Moreno et al. (53), 2007</td>
<td>14–55</td>
<td>51/49</td>
<td>11/9</td>
<td>Olive + Grass</td>
<td>10 months</td>
<td>60 μg group 5 90 μg Olive e 1/month, Solution</td>
<td>NS</td>
<td>RC</td>
<td>ALK</td>
<td>vs first season: eye, nose, lung and total symptom (&lt;0.01); symptom + drugs (0.02) VAS (0.01); GoL (0.01)</td>
<td>Symptom and drug active vs placebo</td>
</tr>
<tr>
<td>Mosges et al. (54), 2007</td>
<td>18–50</td>
<td>48/53</td>
<td>6/5</td>
<td>Grass</td>
<td>9 months</td>
<td>Cumulative 3.5 mg Phl p 5</td>
<td>NS</td>
<td>RC</td>
<td>STA</td>
<td>Nasal + ocular symptoms ~37% (0.03) Eye symptoms ~47% (0.003)</td>
<td>Nasal symptoms (0.08), IgE, IgG4</td>
</tr>
<tr>
<td>Panzer et al. (55), 2008</td>
<td>15–50</td>
<td>45/30</td>
<td>4/0</td>
<td>Grass SLIT or supraling</td>
<td>1 year</td>
<td>38 μg Lol p 5/month Cumulat: 456 μg Solution</td>
<td>NS</td>
<td>RC</td>
<td>SEVA</td>
<td>Symptoms ~38% (supralingual); ~67% SLIT, drugs ~67%</td>
<td>IgE; SPT</td>
</tr>
<tr>
<td>Okubo et al. (56), 2008</td>
<td>25–55</td>
<td>30/23</td>
<td>1/1</td>
<td>Cedar</td>
<td>5 months</td>
<td>2000 JAU</td>
<td>NS</td>
<td>RC</td>
<td>TORI</td>
<td>Symptoms and med better in SLIT in 4 days of season; GoL Overall season symptoms and medications</td>
<td></td>
</tr>
<tr>
<td>Pfaar and Klimek (57), 2008</td>
<td>17–59</td>
<td>94/91</td>
<td>17/9</td>
<td>Grass</td>
<td>2 years</td>
<td>1.2 mg/month Solution</td>
<td>NS</td>
<td>RCA</td>
<td>ALP</td>
<td>Symptoms + med scores AUC (&lt;0.01), VAS</td>
<td></td>
</tr>
<tr>
<td>Wahn et al. (58), 2008</td>
<td>4–17</td>
<td>139/139</td>
<td>4/8</td>
<td>Grass</td>
<td>8 months</td>
<td>600 μg major allergen/month, Tablets</td>
<td>NS</td>
<td>RC</td>
<td>STA</td>
<td>Rhinitis score ~28% (0.01); Meds ~24% (0.006); Med. free days (0.01)</td>
<td></td>
</tr>
</tbody>
</table>
The majority of the clinical trials used the traditional symptom score assessment (graded from 0 to 3) plus recording of doses of rescue medications. In some trials, other evaluation parameters were applied, including visual analogue scale (VAS), combined score, symptom-free days and medication-free days. Out of 60 DBPC-RCTs, 18 enrolled more than 100 patients (9, 17, 34, 35, 38, 39, 41, 43, 46, 47, 50, 52, 57–60). Of these, ten had a formal sample size calculation (41, 43, 46, 47, 50, 52, 57–60). Twenty DBPC-RCTs involved only paediatric subjects (<18 years of age). As shown in Table 4-1, in the majority of the trials, the results were overall positive for one or more of the parameters investigated. On the other hand, there were four totally negative studies (4, 20, 47, 56) and eight trials reported only partial or negligible clinically efficacy (8, 9, 11, 27, 34, 36, 46, 52).

During the last three years, adequately powered, well-designed DBPC-RCTs involving several hundreds of patients and using standardized grass pollen tablets, were published (39, 41, 43, 50, 58–60). In those studies the magnitude of the effect, defined as the reduction in diary symptoms and rescue medication scores compared to placebo was reported as 16% and 28% (41), 30% and 38% (43), 35% and 46% (50), 28% and 24% (58), 24% and 34% (60) respectively. All these trials followed the established methodological criteria, had a power calculation and clearly defined outcomes and statistical analyses. So far, these large trials represent the best evidence available on the efficacy of SLIT. According to these trials, a dose-dependency of the efficacy of SLIT was observed, and the optimal monthly maintenance dose for grasses was identified as about 600 mg of the major allergen(s).

One large DBPC-RCT (47) of grass extract, with 164 patients from general practice, screened and selected by researchers and specialists from a university allergy department, failed to demonstrate any difference between active and placebo. In another large trial with grass extract (52), a significant difference in rhinitis scores could be seen only for those patients without asthma. The vast majority of the DBPC-RCTs were designed to assess the efficacy of SLIT in rhinoconjunctivitis, and asthma was sometimes evaluated as a secondary outcome. Only eight studies were specifically designed to assess the effect of SLIT in asthma (15, 21, 31, 38, 39, 44, 46, 61), and the majority confirmed a significant effect on symptoms and/or medication intake. In the three asthma studies that reported negative results (39, 44, 46), the patients were almost completely free of asthma symptoms at enrolment and remained so during the trial, so that the absence of efficacy is not substantiated. Only two DBPC-RCTs assessed the efficacy of multiple non cross-reacting allergens (53, 62). The first one used grass and olive extracts, and confirmed the efficacy of SLIT in rhinitis. The second one compared the efficacy of SLIT with grass alone or with grass plus nine other pollens and found that the treatment with a single allergen had more effect on immunological parameters than that with multiple aller-
Because of the low pollen count, no clinical difference between the two groups and placebo was seen in this study.

**Meta-analyses**

The first meta-analysis of SLIT for allergic rhinitis included 22 trials and 979 patients up to September 2002. It concluded that SLIT was significantly more effective than placebo (63), but the studies in allergic asthma were too few to perform a meta-analysis. A meta-analysis in asthma was recently repeated, including 25 trials (either open or blinded) and involving more than 1000 adults and children (64). This meta-analysis demonstrated a significant effect of SLIT for most of the considered outcomes (symptoms + medications, pulmonary function, overall improvement), with the exception of asthma symptoms alone. Another meta-analysis (65) of SLIT for allergic rhinitis in paediatric patients (aged 4–18 years) involved 10 trials and 484 subjects. It showed that SLIT was significantly more effective than placebo, as assessed by the reduction in both symptom scores and rescue medications usage. Although all the studies were of high methodological quality, there was a relevant heterogeneity ($I^2 > 80\%$), because of the large variability in study design, duration, outcome measures and inclusion criteria. Finally, a meta-analysis was also performed for asthma in paediatric patients (66). This review included nine DBPC trials and 441 patients, and found a significant effect of SLIT on both asthma symptoms and rescue medication usage. Also in this case, the heterogeneity of the trials was very large ($I^2 > 90\%$). The meta-analyses mentioned pooled together all the allergens, whereas a systematic evaluation of the efficacy of one specific allergen is available only for house dust mite (67), with positive results. In summary, the available meta-analyses involve very heterogeneous trials, often without a proper sample size calculation: publication biases and discrepancies in data collection are additional concerns (68). Thus, meta-analyses provide only suggestive evidence.

**Other controlled studies (Table 4-2)**

There are eight randomised open controlled trials (69–76) assessing the clinical efficacy of SLIT, mostly compared with control groups receiving drugs only. All these studies provided positive results for clinical scores and/or medication intake, and two of them (71, 74) also demonstrated a significant reduction in non-specific bronchial hyperresponsiveness. One trial (75) was specifically designed to evaluate the safety of a no-updosing regimen, rather than the efficacy, and another (76) demonstrated that SLIT with two non cross-reacting allergens (birch and grass) is overall more effective than SLIT with the single allergens in both pollen seasons.
<table>
<thead>
<tr>
<th>Author (ref), year</th>
<th>Description</th>
<th>Age range</th>
<th>Patients</th>
<th>Allergen</th>
<th>Duration</th>
<th>Dose Preparation</th>
<th>Disease</th>
<th>Manufacturer</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marogna et al. (72), 2004</td>
<td>Randomised, open controlled</td>
<td>18–62</td>
<td>390 SLIT 192 Control</td>
<td>HDM Grass <em>Parietaria</em> Birch</td>
<td>3 years</td>
<td>32 μg Der p 1/month 5.8 μg <em>Phl p1</em>/month 5.8 μg <em>Par j1</em>/month 8.3 μg <em>Bet v1</em>/month</td>
<td>RC</td>
<td>ANA</td>
<td>Clinical scores improvement at 1, 2 and 3 years vs baseline and controls (&lt;0.01). New sensitizations at 3 years in 5.9% SLIT and 38% controls (&lt;0.01).</td>
</tr>
<tr>
<td>Marucci et al. (73), 2005</td>
<td>Randomised, open, two different doses</td>
<td>6–14</td>
<td>100IR = 32 300IR = 42</td>
<td>Grass</td>
<td>6 months</td>
<td>100 IR 300 IR Glycerosaline</td>
<td>RC</td>
<td>STA</td>
<td>Higher dose better for overall score (P = 0.024), symptoms (0.03), and medications (0.04) during peak pollen. No change in IgE.</td>
</tr>
<tr>
<td>Marogna et al. (74), 2005</td>
<td>Randomised open. Controls with drugs only</td>
<td>18–65</td>
<td>39 SLIT 40 Control</td>
<td>Birch</td>
<td>5 years 5 seasons</td>
<td>8.5 μg <em>Bet v1</em> glycerinated</td>
<td>RA</td>
<td>ANA</td>
<td>From second season: reduction asthma/ rhinitis symptoms (0.01), salbutamol intake (0.001), methacholine reactivity (0.01). No change in the first season.</td>
</tr>
<tr>
<td>Guerra et al. (75), 2006</td>
<td>Randomised, open. Comparison traditional vs no updosing</td>
<td>18–45</td>
<td>10 tradition 10 no updosing</td>
<td><em>Parietaria</em></td>
<td>3 months</td>
<td>90 μg <em>Par j1</em> cumulative Solution</td>
<td>R</td>
<td>ALK</td>
<td>No difference in side effects between the two regimens.</td>
</tr>
<tr>
<td>Marogna et al. (76), 2007</td>
<td>Randomised open. Four groups: birch, grass, birch + grass, controls</td>
<td>19–43</td>
<td>11 birch, 12 grass, 13 birch + grass 12 Control</td>
<td>Birch Grass</td>
<td>2 seasons Second and Fourth year</td>
<td>100 μg <em>Bet v1</em> 80 μg <em>Phl p1</em></td>
<td>RA</td>
<td>ANA</td>
<td>Single allergens effective on symptoms and medication scores in the specific season and other season. Combined SLIT significantly more effective in both seasons.</td>
</tr>
<tr>
<td>Author (ref), year</td>
<td>Design</td>
<td>Patients</td>
<td>Allergen</td>
<td>Duration</td>
<td>Dose</td>
<td>Manufacturer</td>
<td>Main results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quirino et al. (77), 1996</td>
<td>Randomised DB double-dummy without placebo arm</td>
<td>10 SLIT, 10 SCIT</td>
<td>Grass</td>
<td>12 months</td>
<td>6.4 µg major allergen/month for SCIT. SLIT = 3 X SCIT</td>
<td>ALK</td>
<td>Significant reduction in symptom and drug intake score ($P &lt; 0.01$) in both groups versus baseline. No change in IgE. Increase in IgG and reduction of skin reactivity only in SCIT group.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bernardis et al. (79) 1996</td>
<td>Randomised, open, without placebo</td>
<td>SCIT, SLIT</td>
<td>Altern</td>
<td></td>
<td></td>
<td>ALK</td>
<td>SLIT: decrease in symptoms at 3 months (0.01) but not 12–24 months. SCIT: decrease in symptoms at 3, 12, 24 months (&lt;0.01). IgE, IgG and IgG4 changed only in SCIT. No change at all in LNIT.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piazza and Bizzarro (80), 1993</td>
<td>Randomised, open, SLIT and SCIT vs nasal IT and controls</td>
<td>17 SCIT, 14 SLIT, 12 LNIT, 14 Controls</td>
<td>HDM</td>
<td>2 years</td>
<td>SCIT: 4.8 µg/month SLIT: 12 µg/month LNIT: 32 ng/month</td>
<td>ALK</td>
<td>Reduction in rhinitis score for SLIT (&lt;0.01) and SCIT (&lt;0.05). Asthma score reduction only SCIT (&lt;0.05). Reduction drug score for both SLIT and SCIT. Reduction SPT diameter only in SCIT.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mungan et al. (81), 1999</td>
<td>Randomised open, placebo- SLIT controlled</td>
<td>15 SLIT, 10 SCIT, 11 Placebo</td>
<td>HDM</td>
<td>1 year</td>
<td>Der p 1 SLIT: 21.6 µg/month SCIT: 0.6 µg/month</td>
<td>STA</td>
<td>Reduction of rhinitis score in SLIT (0.36) and SCIT (0.75). No significant difference between treatments, both superior to placebo ($P = 0.002$). Medication scores SLIT and SCIT vs placebo ($P = 0.02$). No change in QoL.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khinchi et al. (78), 2002</td>
<td>Randomised DB double-dummy placebo contr.</td>
<td>21 SCIT, 18 SLIT, 19 Placebo</td>
<td>Birch</td>
<td>2 seasons</td>
<td>Bet v 1/month SCIT: 3.28 µg SLIT: 738 µg</td>
<td>STA</td>
<td>Reduction of rhinitis score in SLIT (0.36) and SCIT (0.75). No significant difference between treatments, both superior to placebo ($P = 0.002$). Medication scores SLIT and SCIT vs placebo ($P = 0.02$). No change in QoL.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauro et al. (82), 2007</td>
<td>Randomised open SLIT vs SCIT</td>
<td>19 SCIT, 15 SLIT</td>
<td>Birch</td>
<td>4 months</td>
<td>Cumulative 50.65 IR SCIT 4653.1 IR SLIT</td>
<td>STA</td>
<td>During pollen season, no difference SLIT-SCIT in symptoms + drug scores. Specific IgG4 significantly increases with SCIT only.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4-4 DBPC-RCTs in Diseases other than Respiratory Allergy

<table>
<thead>
<tr>
<th>Author (ref), year</th>
<th>Age range</th>
<th>Patients A/P*</th>
<th>Dropout A/P*</th>
<th>Allergen</th>
<th>Duration</th>
<th>Dose</th>
<th>Disease</th>
<th>Manufacturer</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrique et al. (83), 2005</td>
<td>19–53</td>
<td>12/11</td>
<td>1/0</td>
<td>Hazelnut</td>
<td>6 months</td>
<td>188 ( \mu g ) Cor a1/day</td>
<td>Food allergy</td>
<td>Significant increase in the food challenge provocation dose ( (P = 0.02) ). 50% active subjects tolerated maximum dose. No change IgG4 and skin test.</td>
<td></td>
</tr>
<tr>
<td>Fernandez Rivas et al. (84), 2009</td>
<td>20–40</td>
<td>37/19</td>
<td>4/3</td>
<td>Peach</td>
<td>6 months</td>
<td>300 ( \mu g ) Pru p 3/month</td>
<td>Food allergy</td>
<td>ALK</td>
<td>Significant increase (3–5 times) of the provocation dose at DBPCFC</td>
</tr>
<tr>
<td>Bernardini (85), 2006</td>
<td>5–14</td>
<td>12/14</td>
<td>0/0</td>
<td>Latex</td>
<td>1 year</td>
<td></td>
<td>Skin, respiratory and oral allergy due to latex</td>
<td>ALK</td>
<td>Active group: Improvement glove test at 3 months and 1 year ( (P &lt; 0.01) ). Reduction oral allergy syndrome</td>
</tr>
<tr>
<td>Pajno et al. (87), 2007</td>
<td>5–16</td>
<td>28/28</td>
<td>2/6</td>
<td>Mite</td>
<td>18 months</td>
<td>3.3 ( \mu g ) Der p 1/week</td>
<td>Atopic dermatitis</td>
<td>ANA</td>
<td>Only in mild-moderate subjects: Reduction SCORAD starting from month 9 ( (P = 0.025) ), Reduction rescue medications ( (P &lt; 0.02) )</td>
</tr>
<tr>
<td>Nettis et al. (86), 2007</td>
<td>18–47</td>
<td>20/20</td>
<td>2/3</td>
<td>Latex</td>
<td>12 months</td>
<td>1200 ( \mu g )/month</td>
<td>Latex allergy, urticaria, asthma</td>
<td>ALK</td>
<td>Active group: Decreased reactivity glove test ( (P &lt; 0.05) ), Decreased bronchial reactivity to latex ( (&lt;0.05) ), Symptoms and rescue medication scores at 6 and 12 months</td>
</tr>
<tr>
<td>Severino et al. (88), 2008</td>
<td>18–65</td>
<td>15/15</td>
<td>1/3</td>
<td>Honey bee</td>
<td>6 months</td>
<td>525 ( \mu g ) venom/month</td>
<td>Hymenoptera allergy, Large local reactions</td>
<td>ANA</td>
<td>Reduction peak diameter LLR ( (P = 0.014) ) at sting challenge. Increase specific IgG4 (0.03)</td>
</tr>
</tbody>
</table>

*Active/Placebo; Rhinitis, Asthma, Conjunctivitis.

ALK, Alk-Abelló; ANA, Anallergo; ALB, AllerBio; AL P, Allergopharma; ART, Artu Biologicals; CBF, CBF Leti; HS, Hollister-Stier; LOF, Lofarma; STA, Stallergenes; SEVA, Seva Pharma; TORI, Torii Pharmaceuticals.
Comparison with SCIT (Table 4-3)

When comparing two different routes of administration, the gold standard methodology is the use of a double-blind, double-dummy design. One double-dummy study, although without a placebo group, conducted in grass pollen allergic patients, showed that the clinical efficacy of SLIT (symptoms and medication use) was equivalent to that of SCIT (77). Another rigorous double-blind, double-dummy, placebo-controlled trial with birch pollen extract, compared SLIT and SCIT. Symptoms and medication use were reduced by about one-third in the SLIT group and by one-half in the SCIT group, with no significant difference evident between treatments. However, there were six grade 3 and 4 adverse reactions in the SCIT group and none in the SLIT group (78). Four other comparative studies have been published, but they were all conducted in an open fashion. Bernardis et al. (79) performed an open comparative 12 months study in *Alternaria tenuis* allergic patients and found a clinical improvement in symptoms (mainly rhinitis) and medication use in both groups with a statistically significant difference in favour of SLIT. In another study (80), the clinical efficacy of SLIT, SCIT and nasal immunotherapy was assessed in 43 patients with rhinitis due to mites. This study considered only the immunological changes, which were significant only for SCIT. An open comparison (81), again in mite-allergic patients, showed that the clinical improvement was more prompt with SCIT, especially for asthma symptoms, although SLIT controlled rhinitis symptoms well. Finally, Mauro et al. (82), compared SCIT and SLIT in 47 patients with birch allergy and found no difference between the two treatments in seasonal symptom score, although specific IgG4 significantly increased only with SCIT.

DBPC-RCTs of SLIT in other diseases (Table 4-4)

The efficacy of SLIT was investigated, as proof of concept, in DBPC-RCTs in diseases other than respiratory allergy, namely food allergy (83, 84), latex allergy (85, 86), atopic dermatitis (87), and Hymenoptera venom allergy (88). The results of all these trials were clearly in favour of SLIT. Enrique (83) found that SLIT was able to significantly increase the oral provocation threshold in patients with hazelnut allergy and the same was shown by Fernandez et al. with peach (84). Pajno et al. (87) showed that in patients allergic to mites and with mild-moderate atopic dermatitis SLIT after 9 months significantly reduced the SCORAD score. Severino et al., in 30 patients with honeybee allergy, demonstrated that a 6-month course of SLIT with a maintenance dose of 525 µg venom significantly reduced the severity of large local reactions to sting challenge (88).

Unmet needs

- Recent large trials with grass extracts have identified the optimal dose for this allergen: similar studies (dose-finding, DBPC-RCT) are mandatory for the other relevant allergens, that is, house dust mite (HDM), *Parietaria*, ragweed and cat dander, but should take into account the variability of potency of extracts among manufacturers (89).
- According to press releases and one abstract (90), some US clinical trials failed to reach the primary outcome, thus, FDA approval is still pending. Possible reasons for those results, including inappropriate patient selection and low pollen counts, have been extensively analysed by a WAO task force (91), who also provided recommendations for future trials.
- Current data on the clinical efficacy of SLIT in asthma are controversial: it is essential that RCTs with appropriate sample sizes are conducted in patients symptomatic for asthma under natural allergen exposure. Symptom and rescue medication intake scores are a reasonable outcome measure, but objective parameters (FEV₁, PEF) should be included as co-primary endpoints.
- Experimental data on mixtures of unrelated allergens are very scarce, thus properly conducted clinical trials evaluating this are needed (the safety aspect is of primary relevance). Since the European Agency for Medications (EMEA) recommends against mixing different allergens in a single preparation (92), there may be problems with the feasibility of clinical studies with such mixtures.
- Other relevant questions are the optimal duration of a SLIT course, the duration of the preseasonal induction and the efficacy/safety of the no-build up regimens.
- Oral allergy symptoms are commonly reported in many studies and it is not possible to control for this side-effect. This fact could influence results.
- Although positive results on the use of SLIT in latex allergy, food allergy, atopic dermatitis and Hymenoptera venom allergy have been reported, these should be considered as investigational: further data on efficacy and safety are needed.
- No clinical data are available for nickel-induced systemic reactions (SRs).

References, Chapter 4

Sub-lingual immunotherapy


35. Dahl R, Stender A, Rak S. Specific immunotherapy with SQ standardized grass allergen tablets in asthmatics with rhino-

29. Dahl R, Stender A, Rak S. Specific immunotherapy with SQ standardized grass allergen tablets in asthmatics with rhino-

25. Lue KH, Lin YH, Sun HL, Lu KH, Hsieh JC, Chou MC. Clinical and immunologic effects of sublingual immunotherapy in asthmatic children sensitized to mites: a double-blind, random-


17. de Blay F, Barnig C, Kanny G, Pyrohlt A, Leynadier F, Tunon de Lara JM et al. Sublingual-swallow immunotherapy with standardized 3-grass pollen extract: a double-blind, placebo-

16. Mosges R, Buning HJ, Hessler G, Gotz G. SLIT in pollen in-

15. Moreno-Ancillo A, Moreno C, Ojeda P, Dominguez C, Bara-

14. Mosges R, Buning HJ, Hessler G, Gotz G. SLIT in pollen in-

13. Okubo K, Gotoh M, Fujieda S, Okano M, Yoshida H, Mor-

12. Okubo K, Gotoh M, Fujieda S, Okano M, Yoshida H, Mor-

10. Pfärr A, Klimek L. Efficacy and safety of specific immuno-


8. Wahn U, Tabar A, Kuna P, Halken S, Montagut A, De Beau-

7. Stelmach I, Kaczmarek-Woźniak J, Majak P, Olszowiec-

Sub-lingual immunotherapy


Chapter 5: Safety of sublingual immunotherapy

- SLIT appears to be better tolerated than SCIT.
- SLIT should only be prescribed by allergy-trained physicians.
- Specific instructions should be provided to patients regarding the management of adverse reactions, unplanned interruptions in treatment and situations when SLIT should be withheld.
- The majority of SLIT adverse events appears to occur during the beginning of treatment.
- A few cases of SLIT-related anaphylaxis have been reported but no fatalities.
- Risk factors for the occurrence of SLIT severe adverse events have not yet been established.
- There is a need for a generally accepted system of reporting adverse reactions/anaphylaxis.

Classification and frequency of SLIT adverse events

One of the purported advantages of SLIT over SCIT is greater safety, which may allow for administration of this treatment outside of the medical setting. In a comprehensive review of 104 articles on SLIT, there were 66 studies that provided some information on safety and tolerance, representing 4378 patients who received approximately 1,181,000 SLIT doses (1). The amount of information on the adverse events (AE) in these studies varied greatly, ranging from general summary statements, such as ‘no relevant side effects,’ to a detailed analysis of the AEs. One consideration with SLIT is that the majority of doses are administered outside of the clinic setting with no direct medical supervision, and the accuracy of the AE reporting is dependent on the patient and/or family’s interpretation of the event and recall. The vast heterogeneity in classifying and reporting immunotherapy (SCIT and SLIT) AEs in the published clinical trials makes comparisons and analysis of safety difficult. Recognizing the need for a more uniform classification of immunotherapy AEs, a Joint Task Force (representing members of the American College of Allergy and Clinical Immunology [ACAAI], American Academy of Allergy and Clinical Immunology [AAAAI], EAACI, and WAO immunotherapy committees) was formed with the purpose of developing a uniform classification system for anaphylaxis. This grading system is referred to as the World Allergy Organization Subcutaneous Immunotherapy Systemic Reaction Grading System, and a paper is in press in the Journal of Allergy and Clinical Immunology.

Only ten studies in this review classified the severity of the AE according to varying criteria. Three studies classified the reactions according to the recommendations of EAACI, which have subsequently been modified and were originally intended as a classification system for SCIT reactions (2). Oral-mucosal reactions, considered a SLIT local reaction, were relatively common, affecting up to 75% of patients, and seen most frequently in the build-up phase. In the studies that specified the type of reaction, 169 of 314,959 (0.056% of doses administered) were classified as systemic reactions (SR). There were 244 moderate AEs requiring dose adjustment or causing withdrawal from the study in 2939 patients treated for 4586 treatment years with 810,693 doses of SLIT (50 studies). The majority of these reactions were gastrointestinal symptoms, rhinoconjunctivitis, urticaria or some combination of these symptoms.

In the 38 placebo-controlled studies, there were approximately 282,894 SLIT doses administered to 1688 patients, which resulted in 353 (21%) patients reporting 823 AEs (2.9 per 1000 doses) and 226,261 placebo doses administered to 1302 patients, resulting in 152 (11.7%) patients reporting 207 AEs (0.9 per 1000 doses). AEs accounted for withdrawal in 3% of the SLIT patients compared with 1.4% of the placebo-treated patients. To provide some perspective, in one review of 38 SCIT studies, the systemic reaction rate with non-accelerated schedules (single dose increase per visit) ranged between 0.05–3.2% of injections and 0.8–46.7% of patients (mean, 12.92%) (3).

SLIT serious adverse events

In the SLIT comprehensive review, there were no fatalities or events described as anaphylaxis, although there were 14 probable SLIT-related serious adverse events (SAE) in 3984 patients treated with a total of 1,019,826 doses in 58 studies. This represents 1.4 SAEs per 100,000 SLIT doses and one SLIT-related SAE per 384 treatment years or 285 patients. The most common SLIT-related SAEs were asthmatic reactions (7), one of which required hospitalization: the others were abdominal pain/vomiting (3), uvula oedema (1), and urticaria lasting 48 hours. Subsequent to this review, there have been four case reports of SLIT-associated anaphylaxis:

- One occurred on the third day of build-up with a multi-allergen SLIT extract in a 31-year-old woman with allergic rhinitis and asthma (4).
- One occurred in a 11-year-old girl with allergic rhinitis and asthma shortly after administration of mixed pollen SLIT at the height of pollen season, 1 month after beginning maintenance (5).
- One occurred on the fourth day of a latex rush protocol (6).
Sub-lingual immunotherapy

Risk factors for SLIT adverse events

No clear predictors for SLIT AEs have been identified although some of the factors in the SLIT anaphylaxis case reports are recognized as risk factors for SCIT: i.e. height of season (12), history of previous SRs (13), dose (14) and accelerated schedules (15). In addition, most of the patients with SLIT-related SAEs or anaphylaxis had asthma, which has been identified as a risk factor (16).

Dose and adverse reaction rate

There does not appear to be a consistent correlation between the adverse reaction rate or severity and the administered SLIT dose. In an 18-month study of 58 asthmatic children with dust mite allergy treated with relatively low-dose SLIT (1.2 mg of Der p 1 three times a week or 15.4 mg of Der p 1 cumulative monthly dose [CMD]), there were 32 SRs in approximately 6933 administered doses (0.46% per dose) (17). Seventeen of these reactions were classified as severe and because of exceeding ‘maximum tolerated dose’. In contrast, a multicentre study of 97 dust-mite allergic children with mild-to-moderate asthma who received high-dose SLIT (20 drops of 300 IR/ml = approximately 783 mg CMD of mixed mites), there were no incidences of serious SLIT-related AEs or a significant difference in the incidence of AEs between the SLIT and placebo groups (18). The CMD dose in this study was about 50 times the dose used in the study that reported 17 severe dose-related reactions, and the daily dose appeared to be equal to the amount taken by the 16-year-old, who developed anaphylaxis after taking six times her usual dose after a 3-week gap in treatment. However, in some large dose response studies, a relationship between dose and frequency and severity of AE has been demonstrated (19, 20).

Induction schedule

Unlike SCIT, which appears to be associated with a greater incidence of AEs during some accelerated induction schedules such as rush, there does not appear to be a relationship between the type of induction schedule and AEs with SLIT. Rush, ultra-rush and no-induction schedules appear to be equally well tolerated with SLIT. In a study of 679 patients with allergic rhinitis, asthma, or both, who underwent a 20- to 25-minutes ultra-rush SLIT induction, during which increasing doses of allergen were administered every 5 minutes, the cumulative allergen doses achieved after half an hour were in the range of 4.7–525 µg of major allergens (21). All patients were reported to have tolerated the treatment well, with 17.96% of patients reporting mild local symptoms, primarily oral pruritis. Two patients experienced urticaria 2 and 3 hours after the ultra-rush induction and one patient had urticaria and rhinitis 3 hours later.

In two large multi-centre dose response studies of 855 and 628 patients with grass-pollen allergic rhinitis, treated with grass tablets containing up to 15 µg of Phl p 5 (22) or 41 µg of the group 5 major allergens (20), respectively, administered with no induction phase, there was only one serious SLIT-related AE. One patient in the middle-dose treatment group (~5 µg Phl p 5) was hospitalized for observation with ‘mild uvula edema’ (22): the patient continued the study without any further complications.

Although the induction phase does not appear to influence the SLIT AE rate, many studies reported that the majority of AEs occurred during the induction phase as compared with the maintenance phase.

SLIT in young children

SCIT is not generally prescribed to young children, primarily because of safety concerns (23). It has been

© 2009 World Allergy Organization
suggested that children under 5 years of age may have difficulty cooperating in an immunotherapy program, particularly, in communicating symptoms of systemic reactions (24). It has also been suggested that injections can be traumatic to very young children.

Three studies, two observational and one post-marketing survey, specifically designed to assess the safety of SLIT in young children, included a total of 231 children younger than 5-years-old, who were treated with various pollen and mite allergens (33 patients received allergoid) (25–27). AEs were reported in 5–15% of patients in a total of 68,975 doses with rates of 0.268, 0.0766, and 1.767 AEs per 1000 doses in the three studies. Most reactions appeared to be mild or moderate and resolved without treatment. Dose reduction by changing from a sublingual-swallow to a sublingual-spit method controlled gastrointestinal reactions in one study (27). One further RCT with HDM SLIT in 138 children aged 2–5 years with asthma or rhinitis showed only mild to moderate local AEs (28).

Multi-allergen SLIT

Two of the case reports of SLIT anaphylaxis involved multi-allergen SLIT and the vast majority of SLIT studies employed single allergens. Two studies have investigated the safety of multi-allergen SLIT in adults and children (29, 30). There was no significant difference in AEs in a study of 159 adult patients with allergic rhinitis ± asthma (age 16–59 years), who were treated with either a single allergen (n = 76) or multiple allergens (n = 83), with 45 AEs occurring in 42 patients who received 7296 single allergen doses and 51 AEs reported in 47 patients, who received 8051 multi-allergen doses (29). Similar results were found in a study of 355 children (age 3–18 years) who received either single allergen SLIT (n = 179) or multi-allergen SLIT (n = 254) with 76 AEs reported in the single allergen group (42.46% patients, 4.43/1000 doses) and 102 AEs in the multi-allergen group (40.3% patients, 4.42/1000 doses) (P = NS) (29).

SLIT safety: special considerations

Because this treatment is administered at home without direct medical supervision, patients should be provided with specific instructions regarding: how to manage adverse reactions, unplanned treatment interruptions, when and what to report to the prescribing physician, situations when SLIT should be withheld (e.g. oropharyngeal infection, oral abrasion, acute gastroenteritis, asthma exacerbation, etc.) (2). Careful consideration should also be given to the ability of the patient and/or their family to adhere to these instructions and the treatment regimen.

SLIT safety summary

In general, SLIT appears to be associated with fewer and less severe AEs than SCIT. Oropharyngeal reactions are the most common AEs but other reactions, such as asthma, urticaria and abdominal pain have been reported with SLIT. There have been a few case reports of anaphylaxis with SLIT, including two reports of anaphylaxis with the first dose. Risk factors for SLIT AEs have not been clearly established. Some studies suggest a greater frequency of AEs during the induction phase compared to the maintenance phase, but there does not appear to be a relationship between induction schedule and SLIT AEs, with ultra-rush and no-induction schedules reported as being well tolerated in several studies.

Further studies are needed to identify and characterize SLIT risk factors and patients who should initially receive this treatment in a medically supervised setting.

Unmet needs

- The safety of SLIT in moderate to severe asthmatics.
- The safety of SLIT in patients who have had systemic reactions with SCIT.
- The safety of SLIT with multiple allergens.
- Interruptions in treatment: how long between doses is it safe to administer usual dose?
- This might also include treatments with no induction phase: once treatment has begun and there is a gap in treatment, the response to reintroduction is not known.
- Can someone stop e.g. daily grass tablets for a few weeks then restart and stop periodically as patients often do in real life?
- If so would it be safe to start mid-season if they are most symptomatic in season?
- Is it safe to administer SLIT with no induction with all formulations? Or do some require an updosing phase?
- Are oropharyngeal infections or lesions (e.g. ulcers, gingivitis, paradentosis) risk factors for SLIT systemic reactions?
- Under which clinical situations should an SLIT dose be withheld (e.g. recent respiratory tract infection, recent exacerbation of asthma, gastroenteritis)?
- The safety of SLIT in pregnant or breast or feeding women.
- The safety of SLIT in patients on beta-blockers.
- Are there any risk factors that identify which patients may experience a systemic reaction with SLIT?

References, Chapter 5

Chapter 6: Impact of sublingual immunotherapy on the natural history of respiratory allergy

- Allergen specific immunotherapy may alter the natural history of respiratory allergy by preventing the onset of new skin sensitizations and/or reducing the risk of asthma onset.
- There are two randomised open controlled studies suggesting that SLIT reduces the risk of asthma onset in children with rhinitis.
- Two open randomised studies show that SLIT reduces the onset of new allergen sensitizations.
- One DBPC-RCT and one nonrandomised prospective study suggest the persistence of the clinical effects for 3–5 years after discontinuation.
Introduction

Respiratory allergy (allergic rhinitis, allergic asthma, united airways disease) is not a static entity, but may change in its clinical presentation over time. Apart from changes in environmental exposure, which can modify the severity and presentation of the disease, there seems to be a 'natural history' of the disorder. One of the paradigmatic examples of this is the so-called 'atopic march' in children (1). It is also well known, for instance, that allergic rhinitis is an independent risk factor for developing asthma and that allergic rhinitis often precedes asthma. It has been shown that 16% to about 40% of subjects with rhinitis develop asthma later in life (2–5), that the relative risk of rhinitis patients developing asthma varies from 2.2 to 5.4 (review in Ref. 6) and that rhinitis independent of atopy is a good predictor of adult onset asthma (7). Identically, prospective studies have shown that allergic rhinitis may precede the development of bronchial hyperresponsiveness (BHR) (8, 9). On the other hand, it has been shown that in children, asthma may precede rhinitis (10). Another well recognized aspect of the natural history of respiratory allergy is the trend to develop new skin sensitizations over time (9), and this has been consistently demonstrated in both adults and children. On one hand, this development testifies for an evolution of the immune response to allergens; on the other hand, it has relevant clinical implications, since the severity of the disease directly correlates in part with the number and size of positive skin tests (11, 12).

Interventions that can alter the natural history of respiratory allergy may reduce the risk of developing asthma or prevent the onset of new allergen sensitizations. Presently, none of the currently available medications, including H1-antihistamines and inhaled steroids, display such properties (13–16). Conversely, the disease-modifying effect of subcutaneous immunotherapy (SCIT) was described more than 40 years ago. In an observational study, Johnstone (17) observed that a significantly smaller proportion of children receiving SCIT developed asthma, versus children treated with medications only, over a period of 14 years. Subsequently, the Preventive Allergy Treatment (PAT) (18) study suggested the preventive effect of SCIT on the development of asthma in children with rhinitis, and this effect was shown to persist 7 years after discontinuation (19). In parallel, it was consistently shown that SCIT was able to reduce the onset of new sensitizations in both adults and children (20, 21). The long-lasting persistence of the clinical effects of SCIT after discontinuation is an additional indirect confirmation of the effect on the natural history (22–25).

The disease-modifying effects of SLIT have only been apparent in the past 10 years because the previous clinical trials were aimed at demonstrating the clinical efficacy and the safety of the treatment. Moreover, studies assessing long-term and preventive effects require several years of follow-up of the patients. Nonetheless, there are some interesting and promising data on the preventive effects of SLIT.

Prevention of asthma

The first study showing that SLIT may prevent the onset of asthma in children with rhinitis was published in 2004 (26). This randomised, open, controlled study involved 113 children aged 5–14 years suffering from seasonal rhinitis due to grass pollen at enrolment. Of these children, 54 were randomly allocated to drug treatment plus SLIT and 59 to standard symptomatic therapy alone. After 3 years, 99 children were re-evaluated: development of asthma was 3.8 times more frequent (95% CI, 1.5–10.0) in the control subjects. Another randomised, open, controlled trial (27) involved 216 children (age 5–17 years) suffering from allergic rhinitis with or without intermittent asthma. They were randomly allocated 2 : 1 to drugs plus SLIT or drugs only, and followed for 3 years. Symptoms and medication scores were recorded yearly during the period of exposure, whereas the presence of persistent asthma was assessed at 3 years. There was a significant reduction of symptom- medication scores only in the SLIT group throughout the study. One hundred and ninety-six patients were evaluated at 3 years, and the occurrence of persistent asthma was 2/130 (1.5%) in the SLIT group and 19/66 (30%) in the control group, with a number to treat of four. Overall, the rate of prevention of the onset of asthma in children, as reported in the aforementioned trials, is quite similar to that described for SCIT in the Preventive Allergy Treatment (PAT) study.

Concerning bronchial hyperresponsiveness (BHR), Pa-jno et al. (28) demonstrated in a double-blind placebo-controlled study of 30 children with Parietaria-induced asthma, that SLIT was capable of preventing the onset of bronchial hyperresponsiveness to methacholine during the Parietaria pollen season. In an open randomised controlled study (29) of 52 birch-monosensitized patients (29 SLIT + 23 controls; followed for five pollen seasons) with allergic rhinitis and asthma, there was a significant and progressive increase in the methacholine provocation dose in the SLIT group (that become near normal at the fifth pollen season), with no change in the control group. As for the PAT study, the severity of asthma in the control groups was never presented.

Prevention of new skin sensitizations

There is no double-blind study with SLIT specifically designed to study the preventive effect on the development of new allergen sensitizations. However, some randomised controlled open trials have suggested this preventive effect with SLIT. Marogna et al. (30) assessed the onset of new allergy skin test sensitizations after 3 years in 511 patients,
randomly allocated to SLIT (319 subjects) or drugs alone (192 subjects). SLIT was given for mites (166), grass (89) or trees (64). At the end of the study, new sensitizations, compared with baseline, appeared in 64/170 (38%) of controls and 16/271 (5.9%) of SLIT patients ($P < 0.001$). In the study mentioned earlier, conducted in children (27), at the third year of follow-up, the rate of onset of new sensitizations was 4/130 in the SLIT group and 23/66 in the control group.

### Long-lasting effect

Few studies have investigated the long-term effect of SLIT. Di Rienzo et al. (31), in a prospective controlled open study, followed 60 children (mean age 8.5 years) with asthma/rhinitis due to dust mites for 10 years. They were subdivided into two matched groups with 35 subjects undergoing 4–5 years of SLIT and 25 subjects receiving only drug therapy. The patients were evaluated at baseline, at the end of SLIT and 4–5 years after SLIT discontinuation. In the SLIT group there was a significant difference compared with baseline for the presence of asthma ($P \leq 0.001$), whereas no difference was observed in the control group. This difference was also seen 5 years after the SLIT discontinuation.

A 15-year follow-up of mite-allergic patients treated with SLIT for 3, 4 or 5 years has suggested that a 4-year course represents the best combination of clinical efficacy and long-term effect (32). Patients who received 4 years of SLIT had significantly better monthly symptom scores 7 years after discontinuation compared with the groups that were treated with 1 or 3 years of SLIT and the untreated control group. Again, a retrospective study on 59 patients allergic to HDM (33) suggested that 4 years of SLIT achieved a long-lasting effect of 7–8 years, whereas this effect was lost with shorter courses of treatment. Tahamiler et al. (34), in a 6-year randomised prospective trial, evaluated two groups of patients up to 3 years after SLIT discontinuation. One group of 67 patients received SLIT for 2 years and placebo in the subsequent year. The other group (70 patients) received SLIT for 3 years. Symptoms and specific nasal reactivity improved in both groups during treatment. The improvement was maintained 3 years after stopping SLIT, although the 3-year group displayed a more pronounced, long-term effect.

### Unmet needs

- The available experimental data suggest that SLIT can exert some effects on the natural history of respiratory allergy, resembling those of SCIT. These studies can be considered suggestive, but not conclusive, due to the relatively small number of subjects and the methodological problems.

- In particular, the long-term effect of SLIT after its discontinuation needs to be confirmed in randomised controlled trials, possibly double-blinded in the first years, and involving large numbers of patients (35).

- The demonstration of a preventative effect on the onset of asthma would also require DBPC-RCTs, where objective respiratory parameters are assessed.

- The severity of asthma in patients on placebo needs to be assessed.

- Specific factors that can predict those patients that are protected against new sensitizations and new development of asthma, need to be identified: this issue also applies to SCIT.

### References, Chapter 6

11. Möges R, Klimmek L. Today's allergic rhinitis patients are different: new factors that may play a role. Allergy 2007;62:969–975.

© 2009 World Allergy Organization
Chapter 7: Sublingual immunotherapy in children

- SLIT is effective in allergic rhinitis in children ≥5 years of age.
- SLIT may be safe in allergic rhinitis in children ≥3 years of age.
- SLIT can be used for allergic rhinitis in children with asthma.
- SLIT should not be suggested as monotherapy for treating asthma.
- There are many unmet needs with SLIT in children.
- More studies are needed with SLIT in children in large randomised trials.

The first study on SLIT in children was published in 1990 (1); since then many studies have been published showing the efficacy and safety of SLIT in allergic children with rhinitis (rhino-conjunctivitis) and some sporadic papers of SLIT in children with other allergic diseases.

Rhinitis
Tari’s study (1) was the first showing the efficacy of SLIT in reducing the symptom score for rhinitis and significantly increasing nasal patency measured by rhinometry. Some studies have been published since then and a recent metaanalysis of 10 DBPC-RCT (that met the metaanalysis criteria out of 70 studies reviewed) found a significant
improvement in those children receiving standardized allergen extract compared to placebo, as well as a decrease in medication use (2), even though the heterogeneity among the studies was high and the dosages used diverse. However, a systematic review of the literature reported that there was no evidence of effect for SLIT in terms of efficacy in rhinitis in the paediatric age group (3), but the studies analysed in this review were those published up until 2005, when study design and dosing were still not optimal (4).

The first evidence of the effect of SLIT in children came from an 18-month study of two different doses of SLIT for tree-pollen allergy in 88 children suffering seasonal allergic rhinitis, confirmed by skin prick test, specific IgE and conjunctival allergen challenge. Eighteen months of SLIT with tree pollen extract provided dose-dependent benefits in terms of significantly reduced symptoms and medication use (5).

Two adequately powered, well-designed DBPC-RCTs have now been published, both showing a clear effect of allergen tablets in childhood. A statistically significant reduction in rhinitis symptoms (28%) and medication (64%) score was shown during the pollen season in 114 children receiving active grass allergen tablets (with 15 µg Phil p 5) compared to 120 children in the placebo group (6). The other DBPC-RCT evaluated the efficacy of five-grass tablets (with 25 µg group 5 major allergen) administered pre- and co-seasonally to 227 children with seasonal allergic rhino-conjunctivitis. In those receiving the five-grass tablets a significant improvement was found in symptom and medication scores (7). All these studies performed by specialists clearly show the efficacy of SLIT in reducing the symptom score during pollen season in children with rhinitis; moreover there was also a significant reduction in medication use. On the contrary a study of SLIT in a primary care setting did not show any differences at all for symptoms, rescue medication-free days, and disease-specific QoL between active and placebo groups, not even when sub-group analysis were carried out (8). The studies suggest that SLIT is effective for the management of rhinitis in children selected and followed up by specialists.

The allergens that have been used with success in SLIT in the paediatric age group for rhinitis are pollen from *Phleum pratense*, 5-grass mix, *Parietaria* and *Betulaceae* pollens and HDM. SLIT with olive pollen showed only improvement in symptoms (9) and one grass study was negative (10).

### Asthma

Tari's study also looked at the effect of SLIT in asthma in children. SLIT induced an improvement in both specific and non specific bronchial hyperreactivity (1). An Italian double-blind, placebo-controlled study evaluated the efficacy and safety of SLIT after 2 years of treatment: there was a significant decrease in symptoms of asthma ($P = 0.0001$) and medication use ($P = 0.0001$) in the active group ($n = 12$) compared to the placebo group ($n = 12$). The visual analogue score on overall asthma symptoms improved in the SLIT group ($P = 0.0001$), but not in the placebo group (11). Other studies have been published showing the efficacy and safety of SLIT in HDM sensitive children with asthma (12). A study in 97 HDM-sensitive asthma children from Taiwan has shown that SLIT was effective in improving not only day and night symptom score but also lung function (13). However two other DBPC studies of HDM SLIT in children were negative (14, 15). In olive pollen sensitive children the dyspnoea score, but not the medication score, improved with SLIT (9). More recently a meta-analysis of DBPC-RCT of SLIT in asthma in children was published (16). Symptom scores and the use of rescue medication were calculated with standardized mean differences (SMDs) using the random-effects model. The statistical software package (REvMAN, 4.2.8; The Cochrane Collaboration; Oxford, UK) was used to perform the meta-analysis following the recommendations of the Cochrane Collaboration and the Quality of Reporting of Meta-analyses guidelines. Overall, there was a significant reduction in both symptoms ($P = 0.02$) and medication use ($P = 0.007$) following SLIT compared with placebo. However, all of these studies were small in size (total number of patients 441) and the size of effect was at best moderate.

One of the recent large trials on SLIT has assessed the effect of the grass-tablets on asthma in children 5–16 years of age. Asthma symptoms (coughing, wheezing, shortness of breath and exercise-induced symptoms) were significantly reduced, whereas use of rescue medication was reduced, but not significantly (6). There is no clear consensus as to the use of SLIT in allergic children with asthma symptoms, particularly those with pollen allergy and concomitant allergic rhinitis (17, 18). The allergens that have been used with success in SLIT in the paediatric age group for allergic asthma are pollen from *Phleum pratense* and *Betulaceae* pollen; pollen extract from *Parietaria* did not show efficacy (19). Furthermore, none of the studies reported objective parameters, and the clearcut diagnosis of pollen asthma in these patients is questionable.

### SLIT in other allergic processes in children

A single study in children with atopic dermatitis (20) and a preliminary report in those with IgE-mediated cow milk allergy (21) suggested that SLIT had given positive results. A DBPC-RCT study showed efficacy in children with cutaneous and respiratory symptoms induced by natural rubber latex (22). At 1 year, latex SLIT reduced the symptom score in treated patients and
prevented reactions induced by cross-reacting fruits. All of these studies open an avenue to study the efficacy and safety of SLIT in children suffering allergic symptoms beyond traditional seasonal or perennial Aeroallergens. However, more studies are needed in order to confirm further clinical indications.

Safety in children

The sublingual route was introduced with the aim of reducing side effects and increasing the safety of immunotherapy. This aspect has been reviewed recently. There is no difference in the incidence of AEs between children and adults (23) and SLIT has been shown to be safe. The most frequently reported AEs (mostly self-limiting) are local in the oral mucosa (itching and swelling) and of the most frequently reported AEs (mostly self-limiting) are local in the oral mucosa (itching and swelling) and of the digestive system. Just a few cases were considered moderate/severe and requiring medical intervention. Experience must be gained in the use of single vs multiple-allergens. SLIT with a single allergen is the most common practice in Europe whereas multiple allergens are used mainly in USA, Latin America and some other parts of the world. In adults, in one study, use of SLIT with multiple allergens was reported to be as safe as SLIT with a single allergen (24).

Unmet needs of SLIT in children

Although recent adequately powered, well-designed DBPC-RCTs with grass tablets in children have shown efficacy, there is no dose-ranging study and the optimal dose is still a matter of debate. Recent metaanalyses indicate that SLIT has a significant effect on symptoms and medications use in allergic rhinitis as well as asthma and the treatment is shown to be safe, though severe AEs may occur (see section on SLIT safety). There are still unmet needs for SLIT in children:

- Optimal dose and dosing frequency of allergen administration
- Efficacy in patients unresponsive to pharmacotherapy
- Drops vs tablets
- Duration of treatment
- Long-term efficacy
- Preventive capacity
- Other allergic process beyond respiratory allergy
- SLIT in preschool children

References, Chapter 7


Sub-lingual immunotherapy

Chapter 8: Guidelines and recommendations on sublingual immunotherapy

- Several adequately powered, well-designed, randomised clinical trials have been published on sublingual immunotherapy.
- High-dose sublingual specific immunotherapy is effective in carefully selected patients with rhinitis, conjunctivitis and/or asthma caused by pollen and/or house dust mite (HDM) allergy.
- Randomised clinical trials have confirmed that sublingual immunotherapy is safe. However, many patients report local side effects.
- Systemic reactions (SRs) have only been reported rarely.

Many consensus and guidelines for immunotherapy have followed the WHO consensus meeting on immunotherapy (1), the first EAACI guidelines on immunotherapy (2), and the WHO Position Paper on immunotherapy (3). In all of these articles, SLIT was not recognized as an effective and/or safe treatment of allergic diseases. In 1998, an EAACI consensus on local immunotherapy (4) suggested that SLIT may be effective but its safety was questioned. Only four trials met the requirements for inclusion in this document. The first ARIA guidelines (5) found that 12 trials could be analysed and proposed use of SLIT both in children and adults. However, SLIT was still a matter of debate, in particular in the USA (6), and is not FDA approved. In their review for the ARIA 2008 Update (7, 8), Passalacqua and Durham listed 23 new RCTs (7). Other RCTs have been reported more recently (9–13).

Guideline development: from evidence-based medicine to patients’ views

A consensus is ‘a document that represents the collective opinion of a convened expert panel’. The opinions expressed in the statement do not reflect a formal evidence review and were not developed in accordance with the process outlined for evidence-based clinical practice guidelines. Early guidelines were predominantly derived from such unsystematically compiled opinions of experts based on clinical trials and mechanistic approaches (Opinion-based medicine) (14). The terms ‘recommendation’, ‘evidence-based’ and ‘guideline’ should not be used in the context of consensus statements.

The development of evidence-based clinical guidelines, on the contrary, follows transparent processes (15). ‘Evidence-based-medicine’ (EBM) has become an essential component in the preparation of guidelines. It is the ability to track down, critically appraise (for validity and usefulness) and incorporate data obtained from the best available evidence (ideally DBPC-RCTs) in order to establish the clinical bases for diagnosis, prognosis and therapeutics (16, 17). Evidence-based medicine attempts to provide a logical, transparent and applicable framework from which the quality and relevance of clinical studies may be assessed in an unbiased manner (18). Systematic reviews contribute to resolving uncertainty when original research, reviews and editorials disagree (19).

The efficacy of SLIT has been assessed in randomised controlled trials (RCTs). Around 50 SLIT RCTs have been carried out. Systematic reviews and meta-analyses have been completed (20–23). However, their results are difficult to interpret for many reasons (Table 8–1).

Although there is increasing agreement upon the components of proper clinical practice guidelines and what constitutes high quality evidence, it is also clear that the highest quality evidence from DBPC-RCTs is often based on selected patients. Therefore, they may fall short of representing the entire population (24). However, RCTs offer the most methodological rigorous approach to establishing cause and effect, thereby providing the highest quality evidence. A number of approaches have been used to grade the quality of evidence and the resulting strength of recommendations (25, 26). The large number of systems...
for measuring the quality of evidence and recommendations is confusing (27) and all previously used approaches for grading levels of evidence and the strength of recommendations have important shortcomings (14, 25).

At present, the identification, interpretation, and reporting of harmful effects is incomplete in RCTs (28, 29). Thus, there is a need to obtain better evidence about side effects (risks) (27). Evidence is required throughout the entire spectrum of the treatment life cycle, from the pre-marketing to the post-marketing phase. Drug safety and effectiveness need to be assessed in the real world, where outcomes may differ from those of controlled clinical trials that provide pre-market test results. Drug regulatory initiatives include data mining, active adverse drug reaction (ADR) surveillance, independent, multidisciplinary evaluation of suspected ADRs and formal pharmaco-epidemiology studies.

More recently, the ‘Guidelines for WHO guidelines’ recommended using a specific, uniform grading system (30). The GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach is one of the recommended systems (26) and is being used increasingly by a number of organizations. The GRADE working group has published the results of its work (31). It grades recommendations in two levels – strong and weak – and quality evidence into four categories – high, moderate, low and very low (26, 27) based on the evidence, the quality of evidence, safety, costs and patients’ views.

**Guidelines and consensus in sublingual immunotherapy**

The first guidelines on immunotherapy were opinion-based (3). Then, most guidelines and consensus used the Shekelle et al. method (32) (Table 8–2).

| Table 8–2 Evidence models of guidelines in sublingual immunotherapy |
|---|---|---|---|
| Year | Evidence model | RCT No.* | Recommendation |
| 1988 | WHO consensus (1) | None | 0 | None |
| 1988 | EAACI 1988 guidelines (2) | None | 0 | None |
| 1992 | EAACI 1992 guidelines (33) | None | 0 | None |
| 1998 | WHO Position Paper (3) | None | 2 | None |
| 1998 | EAACI Local Immunotherapy (4) | None | 4 | Suggested in adults |
| 2001 | ARIA (5) | Shekelle (32)† | 12 | Recommended in adults, suggested in children |
| 2007 | AAAAI/ACAAI Practice parameters (34) | Shekelle (32)† | 18 | SLIT as investigational (in the USA, not FDA approved) |
| 2008 | ARIA Update (8) | Shekelle (32)† | 36 | Recommended in adults and children |

*number of DBPC-RCTs considered in the paper.
†The Shekelle et al. (32) grading system only considers efficacy.

The ARIA guidelines were the first to develop an evidenced-based model (5, 8). Adequately powered, well-designed DBPC-RCTs have been performed with SCIT (35) and SLIT (10, 36–38) in patients suffering from pollen induced allergic rhinitis. In the population selected, they confirmed the efficacy of immunotherapy (Evidence A) (32). In children, one systematic review suggested that SLIT is not effective (22), but a large RCT in birch pollen allergy (39) and two very recent adequately powered, well-designed DBPC-RCTs in grass pollen allergy convincingly showed efficacy (40, 41). More studies are however needed to demonstrate the efficacy of SLIT to other allergens in rhinitis and SLIT in asthma (42). The methodology of RCTs is critical (43, 44) and only trials following an optimal study design should be considered (45, 46). Practice parameters for immunotherapy have been published by EAACI (47, 48) and AAAAI/ACAAI (34). SLIT is safer than SCIT although some rare severe reactions may occur (49–51). SLIT is administered at home and patients should be educated on how to recognize and treat a reaction if it occurs. It is also important to improve the study of the time course of severe reactions after immunotherapy (52). The safety of SLIT in preschool children needs more attention before being widely used (53) or proposed in guidelines. Post-marketing surveillance studies are needed to compare the safety of different forms of immunotherapy.

The costs of treatment are key factors in the therapeutic decision. They should include short-term effects as well as long term effects and the preventive effect of immunotherapy which is always difficult to assess or to model (54). Some large carry-over studies assessing the effect after treatment interruption will soon be available. SLIT was proposed to be cost-effective (55–57) but these analyses suggest a very high annual cost and there are...
**Considerations for initiating immunotherapy (Updated from the WHO Position Paper on Allergen Vaccines) (3)**

1. Presence of a demonstrated IgE-mediated disease:
   - Positive skin tests and serum specific IgE to an allergen concordant to clinical symptoms.
2. Documentation that specific sensitivity is involved in symptoms:
   - Exposure to the allergen(s) determined by allergy testing related to appearance of symptoms.
   - If required, allergen challenge with the relevant allergen(s) (optional).
3. Severity and duration of symptoms:
   - Subjective symptoms for rhinoconjunctivitis: patients should have symptoms of sufficient severity and duration.
   - For asthma: control questionnaire should not show uncontrolled asthma.
   - Objective parameters e.g. work loss, school absenteeism.
   - In asthmatics pulmonary function (essential): exclude patients with severe asthma.
   - Monitoring of pulmonary function.
4. Availability of standardized or high quality vaccines
   - Specific immunotherapy needs to be prescribed by specialists.
   - SCIT needs to be administered by physicians trained to manage systemic reactions if anaphylaxis occurs.
   - SLIT is administered at home and patients should be informed of possible risks and how to control eventual side effects.
   - Patients with multiple sensitivities may not benefit from specific immunotherapy as much as patients with a single sensitivity. More data are necessary.
   - Patients with non-allergic triggers will not benefit from specific immunotherapy.
   - It is essential, for safety reasons, that asthmatic patients should be asymptomatic at the time of the injections because lethal adverse reactions are more often found in asthma patients with severe airways obstruction.
   - In asthmatics, FEV1 with pharmacological treatment should reach at least 70% of the predicted values, for both efficacy and safety reasons.

Some concerns (58). Moreover, there may be some misconceptions about immunotherapy cost-effectiveness. Many studies are now using the quality-adjusted-life years to make pharmacoeconomic decisions (59). It is usually accepted that for severe and/or life-threatening diseases the ICER (incremental cost-effectiveness ratio) threshold is up to 50 000 € per year. This is the case for omalizumab in severe asthma or many biologicals in cancer or neurodegenerative diseases (60). Thus, some authors have proposed that a similar ICER threshold may be used for immunotherapy (60). However, the majority of patients suffering from allergic diseases have a mild to moderate form of the disease and cost-effectiveness needs to take into consideration the preventive effect of immunotherapy using models such as Markov (54, 60).

One of the remaining problems is that the selection of patients for immunotherapy RCTs does not necessarily reflect the current suggestions (5, 8) (Table 8–3). For allergic rhinitis, immunotherapy is commonly indicated in patients who have long-lasting symptoms during the year and/or who were not well controlled by optimal pharmacotherapy (SCUAD: Severe Chronic Upper Airway Disease) and/or who have had side effects from pharmacotherapy and/or who do not wish pharmacotherapy (5, 8). However, these patient characteristics are not included in the published RCTs. One study approached these recommendations and showed that SLIT can reduce medication needs in patients receiving immunotherapy while maintaining disease control (61).

The age of the patients is still a matter of debate. New adequately powered, well-designed DBPC-RCTs have found that SLIT is effective in school children (41, 42, 62). However, there is no study in preschool children. The guidelines on immunotherapy recommend starting the treatment after the age of 5 years (3). In preschool children, safety has to be evaluated in Phase I trials before large RCTs are started. Moreover, the diagnosis of allergy in preschool children may need some attention (64).

### References, Chapter 8

G. Walter Canonica


40. Wahn U, Tabar A, Kuna P, Halken S, Montagut A, de Beru- 


42. Dahl R, Stender A, Rak S. Specific immunotherapy with SQ standardized grass allergen tablets in asthmatics with rhino-

43. Bouquet PJ, Demoly P, Passalacqua G, Canonica GW, 
Bouquet J. Immunotherapy: clinical trials - optimal trial and 

44. Canonica GW, Baena-Cagnani CE, Bouquet J, Bouquet PJ, 
Lockey RF, Malling HJ et al. Recommendations for standard-
ization of clinical trials with Allergen Specific Immunother-


47. Alvarez-Cuesta E, Bouquet J, Canonica GW, Durham SR, 
Malling HJ, Valovirta E. Standards for practical allergen-

48. Alvarez-Cuesta E, Bouquet J, Canonica WG, Durham S, 

49. Blazowski L. Anaphylactic shock because of sublingual immu-
notherapy overdose during third year of maintenance dose. 
Allergy 2008;63:374.

50. Lombardi C, Gargioni S, Cottini M, Canonica GW, Passala-
qua G. The safety of sublingual immunotherapy with one or more allergens in adults. Allergy 2008;63:375–376.


52. Caubet JC, Eigenmann PA. Late side-effects during systemic 


54. Omnes LF, Bouquet J, Scheinmann P, Neukirch F, Jasso-

55. Bachert C, Vestenback U, Christensen J, Griffiths UK, Poulsen 
PB. Cost-effectiveness of grass allergen tablet (GRAZAX(R)) for the prevention of seasonal grass pollen induced rhino-

56. Canonica GW, Poulsen PB, Vestenback U. Cost-effectiveness of 
GRAZAX(R) for prevention of grass pollen induced rhino-

57. Nasser S, Vestenback U, Beriot-Mathiot A, Poulsen PB. 
Cost-effectiveness of specific immunotherapy with Grazax in 
allergic rhinitis co-existing with asthma. Allergy 2008;63:1624– 
1629.

58. BMJ Publishing Group Ltd. Grazax for hay fever? Drug Ther 

59. Sculpher M. The use of quality-adjusted life-years in cost-

60. Bruggenjurgaren B, Reinhold T, Brehler R, Laake E, Wiese G, 
Machate U et al. Cost-effectiveness of specific subcutaneous 
immunotherapy in patients with allergic rhinitis and 
allergic asthma. Ann Allergy Asthma Immunol 2008;101:316– 
324.

Chapter 9: Definition of sublingual immunotherapy patient selection

- To be eligible for SLIT, patients should have:
  - a clinical history of allergy.
  - documented ALLERGEN SPECIFIC IgE positive test.
  - the allergen used for Immunotherapy must be clinically relevant to their clinical history.
  - Age does not appear to be a limitation.
  - Monosensitized patients are ideal candidates for SLIT, and recently single allergen SLIT has been demonstrated to be effective in polysensitized patients.
  - Presently use of SLIT in Latex Allergy, Atopic Dermatitis, Food Allergy and Hymenoptera venom is under investigation: more demonstrations are needed to support clinical use.
  - There is no indication whatsoever for treating non-IgE-mediated hypersensitivity (for instance nickel sensitivity) with SLIT.
**SLIT may be considered as initial treatment. Failure of pharmacological treatment is not an essential prerequisite for the use of SLIT.**

**SLIT may be proposed as an early treatment in respiratory allergy therapeutic strategy.**

**Special SLIT Indications exist in the following patients.**

- Patients uncontrolled with optimal pharmacotherapy (SCUAD).
- Patients in whom pharmacotherapy induces undesirable side effects.
- Patients refusing injections.
- Patients who do not want to be on constant or long-term pharmacotherapy.

Allergen-specific immunotherapy (SIT) is a highly effective treatment in patients with IgE-mediated diseases, asthma, rhinoconjunctivitis, insect venom systemic reactions and probably atopic dermatitis and food allergy.

Patients must have IgE sensitization to an allergen demonstrated either by skin tests or serum IgE antibodies and a relationship between symptoms and exposure to an allergen to which patient is sensitive. Immune modulation by administration of increasing doses of specific allergens provides protection against allergy symptoms on natural exposure to the allergen but only if the allergen is clinically relevant. Many people may have IgE antibodies (a positive skin test or serum specific IgE > 0.35 kU/L) though do not develop symptoms.

Patient selection is important, and efficacy must always be balanced against the risk of side effects. The necessity for initiating SIT depends on the degree to which symptoms can be reduced by medication, the amount and type of medication required to control symptoms, and whether effective allergen avoidance is possible. Therefore, it is essential to consider SIT on the basis of allergen sensitization rather than on a particular disease manifestation (1, 2).

Although the majority of subjects is polysensitized, monosensitized patients or patients concomitantly sensitized to non-cross-reacting allergens are ideal for a single allergen vaccine study and are more likely to demonstrate the beneficial effects of SIT. Inclusion criteria should be defined in relation to age, gender, disease, disease severity, comorbid conditions and previous SIT. Concomitant medications for non-allergic diseases, other illnesses and undesirable daily activities are examples of exclusion criteria (3).

**Age**

There is no specific upper or lower age limitation for SIT. SLIT may be a safe and effective treatment for all ages if an atopic mechanism is involved in the pathogenesis of disease, although efficacy in children under 5 years of age is not documented. A meta-analysis showed that SLIT is effective in children 3–18 years of age with allergic rhinitis (4).

To evaluate the clinical efficacy of SLIT in respiratory allergy in children, eight DBPC-RCTs on SLIT were selected. Five studies were run with house dust mite (HDM), one with olive pollen, one with wall pellitory (Parientaria) pollen, and one with grass pollen. SLIT could be currently considered to have low to moderate clinical efficacy in children of at least 4 years of age, monosensitized to house dust mites, and suffering from mild to moderate persistent asthma (5).

Children with asthma or persistent rhinitis, aged 1 year and 11 months to 3 years and 10 months were treated with a monomeric allergoid. The mean follow-up was 22.3 months and 30/36 children were highly or moderately improved. SLIT was safe in these very young children (6).

**Asthma**

Patients allergic to mites may be candidates for SLIT if they have significant symptoms of rhinitis or asthma when they are exposed to domestic mite allergens.

A metanalysis of DBPC-RCTs evaluated SIT efficacy in the treatment of allergic asthma in children. Nine studies reported 441 subjects who had concluded treatment and had received a final clinical assessment. SLIT with standardized extracts (mainly mites) reduced both symptom scores and rescue medication use in children with allergic asthma compared with placebo (7).

An asthma expert panel recommends that allergen immunotherapy be considered for patients with persistent symptoms and in patients whose asthma is not well controlled by pharmacotherapy, or in whom multiple medications are required (8).

Immunotherapy can prevent the development of asthma in allergic rhinitis patients and new sensitivities in monosensitized children and adults. As in the case of rhinitis, SIT is indicated when there is a significant allergic contribution to the patient’s symptoms (9).

Although efficacy of SIT has been shown for treatment of allergic asthma, there is a risk of acute asthma in patients with severe asthma. Thus, severe or uncontrolled asthma is a contraindication for SIT (8, 10).

**Allergic rhinitis**

Allergen immunotherapy is an effective treatment for allergic rhinitis and can potentially modify the disease. Clinical benefits may be sustained years after discontinuation of treatment, may prevent the development of new allergen sensitization and reduce the risk for the
future development of asthma in some patients. As for asthma, SLIT should be considered if: (i) symptoms are persistent or severe, despite pharmacological and non-pharmacological measures; (ii) medications cause unacceptable side effects; (iii) patients or parents unwilling to use intranasal corticosteroid; (vi) asthma is present. Again, allergen immunotherapy should only be considered if there is clear evidence of a relationship between symptoms and exposure to an allergen to which the patient is sensitive (11–13).

Special considerations

Venom

In a proof-of-concept study, honeybee SLIT significantly reduced the extent of large local reactions to honeybee in monosensitized adult patients, and its safety profile was good. Local reactions are not an indication for venom IT and the efficacy of venom SLIT should be assessed in patients with systemic reactions (14).

Atopic dermatitis

SLIT with a standardized mite extract showed efficacy in children with mild-moderate allergic atopic dermatitis, whereas the benefit was variable in the severe form. Children aged 5 to 16 years with atopic dermatitis (Scoring Atopic Dermatitis [SCORAD] > 7) and sensitized to dust mites (mean mite specific IgE: 10.6 kU/L) received SLIT for 18 months (15). Further studies in atopic dermatitis are necessary before recommendation can be made regarding effectiveness.

Food allergy

The efficacy and tolerance of SLIT with a standardized hazelnut extract were evaluated in 23 patients allergic to hazelnut in a randomised, double-blind, placebo-controlled study. Systemic reactions (SRs) were observed in only 0.2% of the total doses administered. After 8–12 weeks treatment, efficacy was assessed by double-blind, placebo-controlled food challenge: almost 50% of patients who underwent active treatment, but only 9% in the placebo group reached the highest food challenge dose (20 g) provoking objective symptoms. IgG4 and IL-10 levels after SLIT increased only in the active treatment group (16). None of these last three diseases should be presently considered indications for clinical use of SLIT.

Latex allergy

Patients with latex-induced urticaria may benefit from latex SLIT (17). In an open trial designed to evaluate tolerance, SLIT (4 days) with a standardized NRL extract was followed by a 9-week maintenance treatment. In 26 patients, the glove-use test improved significantly after 5 days and 10 weeks of treatment (P = 0.003, P = 0.0004 respectively); the rubbing test also improved significantly (18).

Finally, consideration should be given to the possibility to predict responder patients to SIT; including SLIT; recently the evaluation of serum s-IgE/total IgE ratio has been proposed (19). Further studies are needed to better predict SLIT responders.

Summary

SLIT is indicated for treatment of different allergic conditions following the general criteria of selecting patients for SIT; mild to moderate IgE-mediated disease, clinically relevant allergens, exhausting pharmacological and non-pharmacological therapeutic options, and unavoidable side-effects of medication.

References, Chapter 9

Chapter 10: The Future of Immunotherapy in the Community Care Setting

• The significance of Primary Care: Globally, allergic disease is under-recognised, under- or mis-diagnosed and under- or maltreated, since the symptoms of IgE mediated allergic disease (rhinitis/asthma/eczema/conjunctivitis etc.) overlap with many other conditions. The majority of patients who seek medical advice are seen in primary care.

Introduction

Allergic diseases are increasing worldwide. They are manifest in many different organ systems, often causing distressing and disabling symptoms for the sufferer and their families alike. Allergy is currently managed sub-optimally (1, 2) in the community setting and allergy specialists are often difficult to access.

It is important that health care professionals (HCPs) working in the community have a clear understanding of allergy in order to differentiate the problem from non-allergic causes, such as sensitivity or intolerance, for which allergy medicines have limited effectiveness. Nonetheless H1-antihistamines and other agents may benefit the patient in conditions mimicking allergy (e.g. where pharmacological, hormonal, neurogenic or other stimuli initiate direct degranulation of the mast cell). Many patients’ problems can be managed with the judicious use of...
medications but for some, particularly where medications are not effective, SIT offers the prospect of a cure. The advent of SLIT now offers the possibility of once again providing immunotherapy in the community setting.

Background

Globally, over the last 50 years or so, allergic diseases have increased to epidemic proportions, as clearly demonstrated in longitudinal population studies (3), with a concomitant rise in hospital admissions for severe disease (4). Many people consult their primary health care teams with wide ranging symptoms, which may or may not be due to allergy, the most common manifestations of which are rhinitis, asthma and eczema. Allergy is a set of signs and symptoms caused by mast cell degranulation in response to crosslinking of IgE molecules bound to the membrane of these mast cells by an allergen. The term ‘allergy’ is loosely used by both patients and HCPs, with patients ascribing many symptoms to an allergic cause when a carefully taken history reveals this is not the case (5). Most patients with allergic diseases consult primary care physicians (6).

Similarly lax use of the term by HCPs creates further anxiety and misunderstanding, for example the watering of eyes while cutting onions; or explaining the diarrhoea caused by antibiotics as an allergy instead of as an alteration in bowel flora. It is clear that we have a duty of care to our patients to attempt to make the correct diagnosis by taking a careful history and performing appropriate examinations and investigations (7). Failure to meet patients’ needs leads them to seek help from alternative practitioners who may do more harm than good, and often at great expense to the patient.

Educational needs

In many medical schools allergy is not given a high priority or even included in the medical curriculum. This fact is compounded by the paucity of allergy education given to or acquired by those working in the community setting (8, 9). A description of those needs is beyond the scope of this statement but has been addressed elsewhere (10). It is imperative that clear educational messages are made available to the general public concerning what is and is not allergic disease and what treatments are and are not effective.

Allergy management

This consists of a variety of strategies, foremost of which is avoidance of the offending allergen. This of course may not be possible for example with the ubiquitous house dust mite (11) but for other allergens e.g. peanuts, is currently the only reasonable course of action. Many allergies can be managed by the judicious use of medications and for some diseases such as rhinitis and asthma, there are clear guidelines e.g. ARIA (12), GINA (13), and IPCRG (14).

Rescue medications may be needed to treat some allergic conditions, e.g. use of adrenaline in acute anaphylaxis or oral corticosteroids for an exacerbation of asthma or severe acute intermittent rhinitis. Similarly routine medications such as anti-histamines and intranasal steroids may provide adequate control of many allergic problems such as urticaria or intermittent rhinitis.

Immunotherapy

Prior to the mid 1980s many patients received subcutaneous immunotherapy (SCIT) in the community setting and were assessed, by skin prick testing, prior to administration of allergen extract solutions. Anecdotally many of these patients benefitted from this therapy, although it was delivered in a haphazard, random fashion with no true systematic evaluation, resulting in a number of deaths, leading to an abandonment of immunotherapy in primary care coupled with a loss of confidence in this treatment modality, especially in the UK (15). However the use of allergen immunotherapy in the Primary Care setting (16–19) and also the use of allergen extracts for the diagnosis of allergic disease (20), has been well documented.

More recently both subcutaneous (SCIT) (21, 22) and sublingual (SLIT) (23–28) immunotherapy have been found to be effective treatment for allergies.

For the foreseeable future some forms of immunotherapy (Hymenoptera venom) will have to continue to be administered in specialist units, because of the risk of anaphylaxis. On the other hand SLIT offers an effective (29, 30), safe (31–34) and easy-to-use form of treatment which may be administered by or through primary care (35–38). Fatal anaphylaxis has yet to be encountered, although local side effects are relatively common. Because patients self administer at home, there is little drain on the time of the primary care team who only have to supervise the first dose: it is also cost effective to the patient (39–42). There is now a wide range of allergens available for SLIT, for example, grass (43) and house dust mite (44–50) and the evidence for cumulative benefit is emerging (51, 52).

The current challenge is to identify those patients who are most likely to benefit from the administration of SLIT, what are the steps necessary to identify likely candidates, what investigations are needed to validate that choice and what mechanisms need to be made available in order to ensure efficient, effective, cost effective and safe delivery of this new technology. One suggestion is the creation of a GP with a special interest who would have a higher level of allergy training and greater resources to assess and investigate patients needs, especially where access to specialist care is difficult (53). However, for the immediate future, it would still be advisable that the decision whether

Sub-lingual immunotherapy
or not to initiate SLIT (as for SCIT) should be made by the allergist.

The IPCRG and WAO could join together, as organisations which encompass the generalism of primary care with the specialism of secondary and tertiary care to endorse a course of action which will lead to greater accessibility and availability of these medications coupled with an initiative to meet the educational needs of patients and providers alike.

Unmet needs

- HCPs should learn to differentiate between allergic and non-allergic rhinitis.
- HCPs should be able to use readily available pharmaceutical agents to ameliorate the symptoms of allergic rhinitis.
- HCPs need educational initiatives to help them to understand immunotherapy.
- It is important to recognise which patients might benefit from SLIT.

References, Chapter 10

Sub-lingual immunotherapy


Chapter 11: Methodology of clinical trials in sublingual immunotherapy

- The methodology of randomised clinical trials is essential to critically assess and register treatment interventions.
- Recently, large well-performed randomised clinical trials have been published for specific sublingual immunotherapy.
- Requirements for conducting trials in SLIT include:
  - allergen standardization
  - patient’s inclusion and exclusion criteria
  - Phase I trials to assess safety
  - dose-ranging studies
  - adequate pollen counts in trials on pollen allergic patients
  - pivotal trials which should be of randomised, parallel-group, placebo-controlled design: the number of patients should be adequate.
- Primary and secondary outcome measures are identified.
Introduction

The efficacy and safety of sublingual allergen immunotherapy (SLIT) were until recently a matter of debate. The methodology of many SIT trials was insufficient (1).

Meta-analyses could not reach a clear conclusion because they included RCTs of insufficient methodology, which were not always devoid of defects and the new adequately-powered, well-designed DBPC-RCTs were published later (2–5). The major issues that can be addressed to currently available meta-analyses on SLIT relate to the high level of inter-study heterogeneity (clinical, methodological and statistical) and the size of the studies included. Trials administering different allergens, with different schedules, in different cumulative doses, to different kinds of patients and for different durations were analysed together. Open or single-blind studies were included. The quality of trials measured by accepted evaluation scales, detected defects regarding allocation concealment, blinding, randomization and patient selection in most of the trials, especially in the paediatric population. Therefore, small studies are potentially misleading for the risk of overestimating the size effect of intervention or missing moderate/low effects. Finally, most studies included symptoms as a primary outcome without taking into account the concomitant rescue medications inducing misinterpretation.

Although there are negative DBPC-RCTs (6), adequately-powered, well-designed DBPC-RCTs have recently confirmed the efficacy and safety in adults and children with pollen-induced rhinitis (7–13). It is therefore important to propose guidelines for the performance and evaluation of RCTs in SLIT in order to optimize the quality and reporting of RCTs and guidelines (14).

A paper under the auspices of the World Allergy Organization (WAO) (15) on the methodology of RCTs has been used as a basis for the present paper. Moreover, the European Medicines Agency (EMEA) Committee for Medicinal Products for Human Use (CHMP) Guideline on the Clinical Development of Products for Specific Immunotherapy for the Treatment of Allergic Diseases and other related European regulatory issues were carefully studied (16, 17).

Diseases and allergens to be investigated

The clinical efficacy of SLIT is well established for grass pollen rhinitis and conjunctivitis but more studies are needed for other allergens and asthma. For other allergic diseases such as atopic dermatitis (18), latex (19) or food allergy (20, 21), SIT is still not recommended and adequately-powered, well-designed DBPC-RCTs need to be carried out to critically assess efficacy and safety. Immunotherapy using venoms will not be considered in this chapter.

Quality and standardization of allergen vaccines

The quality of the allergen vaccine is critical. Whenever possible, standardized vaccines of known potency and shelf-life should be used (22, 23).

The potency of allergen vaccines depends on the type of vaccine (allergen extract, recombinant allergen, allergoids) and should follow recommendations such as the recent CHMP guideline on allergen products (24). In any RCT using allergen extracts, the characteristics of the vaccine need to be included, namely the content of representative major allergens in mass units (µg/ml) (22, 23). However, comparison between different manufacturer labelling may be difficult due to differences in assays and methodologies for measurement of the major allergens (25, 26).

For mixtures, the principle of homologous groups is advised in Europe (27), together with the careful assessment of the stability of the extracts when mixing together different allergens.

Placebo

Double-blind, placebo-controlled, SLIT studies have found that up to 65% of subjects on active treatment with allergen versus under 30% on placebo have had local allergy symptoms allegedly associated with absorption of the allergen. This imbalance of adverse local/regional reactions in these studies makes the binding of the study difficult.

Collins English Dictionary defines placebo as ‘an active substance or other form of therapy administered to a patient usually to compare its effects with those of a real drug or treatment …’. The use of a placebo is essential in any study, and appears particularly important in SLIT. Ideally, the placebo should have the same characteristics as the active allergen in appearance, smell, taste, consistency, and cause local symptoms consistent with an allergen extract.

However, the choice for a placebo in SLIT is unclear. Histamine, under the tongue, does not elicit itching; nor are there any other substances that produce similar symptoms to an allergen extract in a person allergic to a given allergen. Therefore, it would be difficult to manufacture a placebo which causes local allergy symptoms. In addition, from some studies, the adverse local effects from SLIT typically remit within a week or two. Because it is not feasible to devise an active placebo, any analysis of efficacy should take into account the incidences of side effects in assessing efficacy. However, in a study, the level of local/regional side reactions was not associated with efficacy (9).
**Patient characteristics**

a. Selection of patients

Many subjects with positive skin tests and/or serum specific IgE do not present with symptoms (28). Thus, only patients with an accurate diagnosis of an allergic disease, and in whom the allergen sensitization is correlated with the time of symptoms should be included in RCTs. The diagnosis of allergy should be based on skin prick tests and/or the measurement of allergen-specific IgE in serum. It is not clear whether both tests are needed. Additionally, nasal and/or conjunctival allergen provocation tests can be used to establish the relevance of the allergen. The history of allergic diseases should cover at least two consecutive years (16).

Allergic diseases should be classified in terms of duration and severity (or control) according to the most recent guidelines: ARIA for allergic rhinitis (29) and GINA for asthma (30). Small studies in patients with perennial rhinitis showed usually less efficacy (31) than those in persistent rhinitis (32). It is therefore advised to study patients with persistent rhinitis.

Patients enrolled in SIT studies should have a minimal level of symptoms (historical for pollen trials or at baseline). The maximum mean (or median) symptom score of patients receiving placebo is usually low in SIT studies by comparison to drug trials. These low scores do not reflect the severity of the disease but may be associated with low allergen exposure of patients during the season.

Because most allergic patients are polysensitized (33), it is important to characterize the different inhalant allergens to which the patients are sensitized, to differentiate mono- and polysensitized subjects, and to consider cross-reactivities between allergens. The exposure to relevant allergens overlapping with the allergen used in a SLIT trial, can cause misleading results. Co-morbidities should be clearly stated and eventually used in multivariate analyses. Patients should not have had any form of immunotherapy within the past 5 years (16).

b. Co-medication and allergen avoidance

The indication of SIT with inhalant allergens is not to replace pharmacologic treatment, but to improve the control of patients who are insufficiently controlled using drugs (22). Concomitant medications are therefore needed in most patients. In most SIT trials, rescue medications are proposed, and should be administered in a standard way in order to calculate a medication score (34). In a study, patients were instructed to use medications in order to control symptoms as best as possible and the primary end point was the medication score (35). In patients with high morbidity, preventer medication should be considered in accordance to ARIA and GINA guidelines. A composite score that includes medication can be considered.

Allergen avoidance is a matter of discussion since single measures to avoid mites are not effective in asthma (36). It has however been proposed that patients should have a control of mites in SLIT trials (16).

**Design of clinical trials**

a. Phase I studies

The methodology of Phase I studies should follow strict recommendations (16). Only allergic patients should be included in Phase I trials. Some SLIT trials have been published (37–39).

b. Phase II studies

i. Outcomes to be measured. Many different outcomes may be examined in Phase II studies in order to support the efficacy of SIT. They are detailed in the WAO Paper (Table 11-1) (15).

ii. Dose-finding studies. One important issue is the optimal dose of allergen which should be used to obtain the maximal efficacy without side effects. Dose-finding studies are therefore required. It has been suggested that challenge studies may be used (16) but RCTs may be needed (9).

iii. Pharmacodynamic studies. The first experimental basis for exploring the in vivo kinetics of allergen administered through non-injectable routes was achieved by radiolabelled allergens, scintigraphic images and chromatography (41, 42). Pharmacodynamic studies can be performed assessing changes on immunologic markers or allergen challenge (16).

c. Phase III studies

i. Baseline assessment. In pollen allergy, the inclusion of a baseline period of observation, e.g. one pollen season before randomization would be optimal. However, due to the unpredictability and variability of allergenic exposure to pollen allergens this baseline period cannot be used to compare with treatment years (43, 44). This baseline season may be used to exclude patients who do not present a clear increase in symptoms during the season. During patient selection, attention should be paid to the out of season level of symptoms in active and control groups in order to check the correlation between increase in symptoms and in pollen counts.

In house dust mite allergy (HDM), a baseline may be used (45), and the fluctuations in the levels of indoor allergens may be observed throughout the studies (32). In the case of corticosteroid-withdrawal studies, a baseline observation period is needed to stabilize asthma and to assess the baseline level of inhaled corticosteroids.
Randomised clinical trial in rhino-conjunctivitis

A randomised, parallel group, placebo-controlled and double-blind design remains the gold standard to determine efficacy and safety of allergen products (15, 46). Superiority studies need to be carried out (16). Trials should be registered.

Many SLIT studies have methodological flaws:

- Inclusion of a small number of participants
- Studies of unmatched groups with respect to disease severity
- Undefined primary outcome
- Non-significant primary outcome and significant secondary outcomes

Assessment of allergen exposure

In pollen RCTs, pollen counts should be measured and pollen traps should be located in order to match the pollen season of all patients of the study. However, it is almost impossible to have a sufficient number of pollen traps in multi-national trials. Moreover, the local exposure of patients is very important and cannot be assessed using pollen traps. Thus, there is only a poor association between pollen counts and individual patients’ symptoms.

In mite studies, the association between household mite allergen levels and symptoms is questionable at best; major allergen content of house dusts in patient’s homes may be measured serially during the trial. However, the levels of mite allergens often decrease during the trial (47).

Number of patients needed to be treated

Phase III trials for registration will need a large number of perfectly characterized subjects. From the recent Phase III trials in SLIT, it seems that a number of 150–200 patients (36) per group is adequate (7–9). However, an appropriate calculation is necessary depending on the primary outcome chosen and the magnitude of effect desired (48, 49).

Primary outcome parameters

The primary end point should, if possible, be a single end point giving a global assessment of the patient. In the case of allergic rhinitis induced by pollens, it is advisable to use the total symptom score including all nasal symptoms (nasal obstruction, rhinorrhea, sneezing and pruritus) with one or more ocular symptoms (7–9). The use of electronic devices to assess the daily symptom score is recommended. There is no universally accepted system to measure symptoms: ordinal scales, days free of symptoms, days free of medications, symptom scores corrected for medications, etc. The most frequently used approach in SIT clinical trials is a four-point rating scale (from 0 = absent to 3 = severe) applied to each symptom.

The minimal relevant magnitude of efficacy has been proposed to be at least 20% higher than placebo (14) and this level appears to be clinically relevant (50).

The use of rescue medication has an impact on symptom severity. Therefore, a primary end point reflecting both symptom severity and intake of rescue medications is favoured. Different approaches to combine the two scoring systems have been proposed but there is no standardized method as yet (51). Any analysis of such a combined score should be supported by a responder analysis (16). A consensus to standardize nasal symptoms or combined scores is still needed.

Secondary outcome parameters

Several secondary outcome parameters can be used:

- Rescue medications or score if they are not included in a global score
- Individual symptoms (52)
- Visual analogue scale (VAS)
- Quality-of-life (50)
- Symptom-free days
- Physician and patient rated clinical global improvement (7–9)
- There is, however, no objective measurement for rhinitis or conjunctivitis.

Exploratory outcome parameters

Exploratory outcomes include:

- Evolution of nasal or conjunctival challenges
- Chamber studies
- Evolution of skin tests to allergens
- Allergen-specific antibodies (7–9) and other immunologic parameters (53–55).

Methodological aspects

Some characteristics of the trials need to be defined before starting the trial and considered until the end of the study:

- Allocation needs to be guaranteed very strictly and verified. At best, a centralized randomization using permutation blocks, generated by computer with a specific list (different random order and/or bloc size) has to be carried out for each centre (allocation within site). Any stratification, justification and methodology should be maintained and confirmed during administration of intervention, data collection and analysis of results. This has to be discussed, especially for long term RCTs.
- The double-blind method has to be described, especially for placebo, which has to be strictly similar to active vaccine (same composition, aspect, colour, taste….) except for allergens (57). However, for SLIT, there are no defined placebo local side effects similar to allergen. Finally, usually in RCTs, double-blind methodology should be maintained and confirmed during administration of intervention, data collection and analysis of results. This has to be discussed, especially for long term RCTs.
- Drop-outs are difficult to avoid due to the usual length of the trials (months or even years). Attempts to reduce drop-outs are essential in order to reduce a potential attrition bias. Drop-out rates should be
In asthma, many studies have attempted to find a sparing effect of treatments, on asthma control or symptoms. However, many of these studies were inconclusive with medications because the placebo effect is significant (43, 79).

d. Studies in children

Despite limitations due to the limited number of patients studied in many reports, recent reviews and meta-analyses (3, 4) usually, but not always (5) showed positive effects of SLIT in children. Moreover, recent large RCTs provided final evidence of effectiveness of SLIT in children (11–13). The European Medicinal Agency (EMEA Directive 2001/ 20/EC) and FDA state clearly that ‘children are not small adults’ and that specific trials should be conducted in this age group. Allergy is difficult to demonstrate in preschool children and SLIT trials may be very difficult to carry out.

ii. Randomised clinical trials in asthma. For a claim of efficacy in asthma, specific trials should be performed (Table 11-2).

8. Study duration

For pollen allergy, the pollen count is important and the clinical effects of SLIT should be recorded during the entire pollen season. However, the primary outcome analysis can be made for the peak of the pollen season, represented for instance by the weeks including 50% of the total pollen load. House dust mites and animal dander can induce both intermittent and persistent symptoms, thus, patients with persistent rhinitis and/or asthma should be carefully selected.

The duration of the treatment needs to be carefully defined (64–66).

9. Compliance to immunotherapy

Compliance to treatment, a major problem of allergy and asthma management, is far better in RCTs than in real life. Thus, ‘real life’ or pragmatic trials are needed (67) but are rarely available for allergic diseases (68). If initiated, such trials should include pharmacoeconomic analyses.

Very few studies have assessed the compliance to immunotherapy. It was found that compliance to SCIT and SLIT is adequate (68–72) although some studies were based on low numbers of patients. On the other hand, in a few patients, compliance to intranasal immunotherapy was found to be low (69). In a ‘real life’ situation, the Florida Medicaid database, it was found that among the 3048 children who were prescribed SCIT, only 16% were still on treatment after 3 years of treatment (73). The real compliance with SLIT is therefore unknown and ‘real life’ studies should be carried out for assessment.

10. Publication of the results

The publication of the RCTs should follow the CONSORT statement whenever possible (74, 75). Funding of the trial should be clearly stated (76). In order to improve transparency, the results should be reported both numerically and with graphs.

Table 11-1 Surrogate or paraclinical parameters

<table>
<thead>
<tr>
<th>Target organ allergen specific reactivity</th>
<th>Immunological parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Skin: end point skin test, late cutaneous response</td>
<td>- Total and allergen specific IgE and IgG subclasses</td>
</tr>
<tr>
<td>- Nose, eye and bronchi: allergen specific provocation test</td>
<td>- Mucosal IgA</td>
</tr>
<tr>
<td>- Allergen chambers</td>
<td>- Lymphocyte subsets and cytokines (e.g. IL-12, IFNγ, IL-5, IL-10)</td>
</tr>
<tr>
<td>Non specific organ reactivity</td>
<td>- Local and systemic inflammatory markers (e.g. adhesion molecules, urinary leukotrienes, sECP, tryptase)</td>
</tr>
<tr>
<td>- Bronchial challenge with methacholine, carbachol, histamine, AMP</td>
<td></td>
</tr>
</tbody>
</table>

AMP: Adenosine Monophosphate; sECP: serum Eosinophil Cationic Protein; From (40)
Table 11-2 Points to consider for RCTs in SLIT

**Allergen vaccine**
- Composition (24)
- If mixture (27)
- Standardization (24)
- Daily dose (22, 23)
- Cumulative dose (22, 23)
- Weekly dose (22, 23)

**Patient selection**
- Demographic characteristics (16, 17)
- Assess all sensitizations (mono or polysensitization): for EU (76)
  - Prove concordance of sensitization and symptoms as not all sensitizations are clinically relevant (16, 17)
- Assess severity of symptoms (16, 17)
- Report co-morbidities (16, 17)
- Exclude patients who received SIT within 5 years (16, 17)

**RCT** (16, 17)
- Randomised
- Double-blind
- Placebo-controlled
- Superiority trial
- Intent-to-treat analysis
- Objective of the study (16, 17)

**Protocol of the trial**
- Maximum daily dose
  - (if possible μg allergen)
- Protocol to reach maintenance
- Number of doses per week
- Duration of the study
- Co-seasonal administration

**Rescue medication**
- Standardized list
- Weighted medication score

**Primary outcome**
- Total symptom score
- Combined symptom-medication score
- For asthma: co-primary: FEV₁ or PEF

**Secondary outcomes**
- Rescue medications
- Individual symptoms
- Visual analogue scale (VAS)
- Quality-of-life (QOL)
- Asthma control
- Symptom-free days
- Physician and patient rated clinical global improvement

**Exploratory analyses**
- Evolution of nasal or conjunctival challenges
- Evolution of skin tests to allergens
- Specific immunoglobulins
- Other immunologic parameters
- Non-specific BHR (asthma)
- Inflammatory biomarkers: induced sputum, FeNO (asthma)
Special ethics should be considered since children cannot usually give their informed consent.

Immunotherapy is not recommended in children under 5 years of age due to the possible severity of side-effects. A post-marketing surveillance safety study on 126 3–5 year-old children (73% with asthma) demonstrated the safety of SLIT prescribed mostly for mite allergy (80).

Preventative studies

Studies assessing long-term efficacy with sustained clinical effect after immunotherapy is stopped (disease-modifying effect) should be specifically designed. Specific trials for this claim need to be carried out (16). Some studies suggest that this effect may be observed during SLIT (81), but more data in sufficiently powered placebo-controlled RCTs are needed.

Cost-effectiveness studies

New studies will need to incorporate cost-effectiveness parameters in their design (40, 82–84) and comparison with other forms of SIT (85).

References, Chapter 11

G. Walter Canonica


Sub-lingual immunotherapy


64. Bouquet J. Sublingual immunotherapy: from proven prevention to putative rapid relief of allergic symptoms. Allergy 2005;60:1–3.


